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Abstract

We propose the Canonical 3D Deformer Map, a new representation of the 3D
shape of common object categories that can be learned from a collection of 2D
images of independent objects. Our method builds in a novel way on concepts from
parametric deformation models, non-parametric 3D reconstruction, and canonical
embeddings, combining their individual advantages. In particular, it learns to
associate each image pixel with a deformation model of the corresponding 3D
object point which is canonical, i.e. intrinsic to the identity of the point and shared
across objects of the category. The result is a method that, given only sparse 2D
supervision at training time, can, at test time, reconstruct the 3D shape and texture
of objects from single views, while establishing meaningful dense correspondences
between object instances. It also achieves state-of-the-art results in dense 3D
reconstruction on public in-the-wild datasets of faces, cars, and birds.

1 Introduction

We address the problem of learning to reconstruct 3D objects from individual 2D images. While
3D reconstruction has been studied extensively since the beginning of computer vision research [49],
and despite exciting progress in monocular reconstruction for objects such as humans, a solution to
the general problem is still elusive. A key challenge is to develop a representation that can learn the
3D shapes of common objects such as cars, birds and humans from 2D images, without access to
3D ground truth, which is difficult to obtain in general. In order to do so, it is not enough to model
individual 3D shapes; instead, the representation must also relate the different shapes obtained when
the object deforms (e.g. due to articulation) or when different objects of the same type are considered
(e.g. different birds). This requires establishing dense correspondences between different shapes, thus
identifying equivalent points (e.g. the left eye in two birds). Only by doing so, in fact, the problem
of reconstructing independent 3D shapes from 2D images, which is ill-posed, reduces to learning a
single deformable shape, which is difficult but approachable.

In this paper, we introduce the Canonical 3D Deformer Map (C3DM), a representation that meets
these requirements (Figure [I). C3DM combines the benefits of parametric and non-parametric
representations of 3D objects. Conceptually, C3DM starts from a parametric 3D shape model of the
object, as often used in Non-Rigid Structure From Motion (NR-SFM [[12])). It usually takes the form
of a mesh with 3D vertices X1, ..., Xx € R? expressed as a linear function of global deformation
parameters «, such that X; = By« for a fixed operator By. Correspondences between shapes
are captured by the identities k of the vertices, which are invariant to deformations. Recent works
such as Category-specific Mesh Reconstruction (CMR) [30] put this approach on deep-learning rails,
learning to map an image [ to the deformation parameters c(I). However, working with meshes
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Figure 1: The C3DM representation (left) associates each pixel y of the image I with a deformation
operator B(k), a function of the object canonical coordinates x = @, (I). C3DM then reconstructs
the corresponding 3D point X as a function of the global object deformation o and viewpoint (R, t).
It extends three ideas (right): (a) non-rigid structure from motion computes a sparse parametric
reconstruction starting from 2D keypoints rather than an image; (b) a monocular depth predictor dy, (1)
non-parametrically maps each pixel to its 3D reconstruction but lacks any notion of correspondence;
() a canonical mapping ®,,(I) establishes dense correspondences but does not capture geometry.

causes a few significant challenges, including guaranteeing that the mesh does not fold, rendering
the mesh onto the image for learning, and dealing with the finite mesh resolution. It is interesting to
compare parametric approaches such as CMR to non-parametric depth estimation models, which
directly map each pixel y to a depth value dy (I) [[70[33,[19]], describing the geometry of the scene
in a dense manner. The depth estimator dy,(I) is easily implemented by means of a convolutional
neural network and is not bound to a fixed mesh resolution. However, a depth estimator has no notion
of correspondences and thus of object deformations.

Our intuition is that these two ways of representing geometry, parametric and non-parametric, can
be combined by making use of the third notion, a canonical map 58,51, 135]]. A canonical map is a
non-parametric model @y (I) = « that associates each pixel y to the intrinsic coordinates « of the
corresponding object point. The latter can be thought of as a continuous generalization of the index k
that in parametric models identifies a vertex of a mesh. Our insight is that any intrinsic quantity —
i.e. one that depends only on the identity of the object point — can then be written as a function of k.
This includes the 3D deformation operator B,, so that we can reconstruct the 3D point found at
pixel y as X, = B,a. Note that this also requires to learn the mapping  +— B, which we can do
by means of a small neural network.

We show that the resulting representation, C3DM, can reconstruct the shape of 3D objects densely and
from single images, using only easily-obtainable 2D supervision at training time — the latter being
particularly useful for 3D reconstruction from traditional non-video datasets. We extensively evaluate
C3DM and compare it to CMR [30]], state-of-the-art method for monocular category reconstruction.
C3DM achieves both higher 3D reconstruction accuracy and more realistic visual reconstruction on
real-world datasets of birds, human faces, and four other deformable categories of rigid objects.

2 Related work

The literature contains many impressive results on image-based 3D reconstruction. To appreciate
our contribution, it is essential to characterize the assumptions behind each method, the input they
require for training, and the output they produce. Multiple works [40, |6, 21} 53} [11}, 138} 26| [71} 28|
47,166, 1564 161} 1451 1461 291 134,53}, 1381 150, 146, 162, 471 take as input an existing parametric 3D model
of the deformable object such as SMPL [40]] or SCAPE [6]] for humans bodies, or Basel [48] for faces
and fit it to images. In our case, no prior parametric 3D model is available; instead, our algorithm
simultaneously learns and fits a 3D model using only 2D data as input.

Sparse NR-SFM methods receive sparse 2D keypoints as input and lift them in 3D, whereas C3DM
receives as input an image and produces a dense reconstruction. In other words, we wish to obtain
dense reconstruction of the objects although only sparse 2D annotations are still provided during
training. For learning, NR-SFM methods need to separate the effect of viewpoint changes and
deformations [69]]. They acheive it by constraining the space of deformations in one of the following
ways: assume that shapes span a low-rank subspace [3. [18} 17, [76] or that 3D trajectories are smooth
in time [4, 5], or combine both types of constraints [1[20} 37} 136], or use multiple subspaces [76, 2],
sparsity [73}[74] or Gaussian priors [60]. In Section@ we use NR-SFM to define one of the loss



functions. We chose to use the recent C3DPO method [44]], which achieves that separation by training
a canonicalization network, due to its state-of-the-art performance.

Dense 3D reconstruction. Differently from our work, most of the existing approaches to dense
3D reconstruction assume either 3D supervision or rigid objects and multiple views. Traditional
multi-view approaches [7]] perform 3D reconstruction by analyzing disparities between two or more
calibrated views of a rigid object (or a non-rigid object simultaneously captured by multiple cameras),
but may fail to reconstruct texture-less image regions. Learning multi-view depth estimators with [70]]
or without [33]] depth supervision can compensate for lacking visual evidence. The method of Innmann
et al. [27] can reconstruct mildly non-rigid objects, but still requires multiple views.

Single-view dense reconstruction of object categories was also addressed in prior works, but most
of them require depth supervision [41,57]. Among those that do not, [[14] proposes a morphable
model of dolphins supervised with 2D keypoints and segmentation masks, while Vicente et al. [63]]
and Carreira et al. [[13] reconstruct the categories of PASCAL VOC. Most of these methods start by
running a traditional SFM pipeline to obtain the mean 3D reconstruction and camera matrices. Kar
et al. [31] replace it with NR-SFM for reconstructing categories from PASCAL3D+. VpDR [42] uses
an image-driven approach for dense reconstruction of rigid categories from monocular views.

A number of recent mesh reconstruction methods based on differentiable rendering can also be trained
with 2D supervision only. Kanazawa et al. [30] introduced CMR, a deep network that can reconstruct
the shape and texture of deformable objects; it is the closest to our work in terms of assumptions, type
of supervision, and output, and is currently state of the art for reconstruction of classes other than
humans. DIB-R [16] uses a more advanced rendering technique that softly assigns all image pixels,
including background, to the mesh faces. In contrast to these methods, we avoid computationally
expensive rendering by leveraging NR-SFM pre-processing and cross-image consistency constraints.

Canonical maps. A canonical map is a function that maps image pixels to identifiers of the
corresponding object points. Examples include the UV surface coordinates used by Dense Pose [22]
and spherical coordinates [58]]. Thewlis et al. [58,[59], Schmidt et al. [51]] learn canonical maps in
an unsupervised manner via a bottleneck, whereas Kulkarni et al. [35] do so by using consistency
with an initial 3D model. Normalized Object Coordinate Space (NOCS) [65] also ties canonical
coordinates and object pose, however it does not allow for shape deformation; different shapes within
category have to be modelled by matching to one of the hand-crafted exemplars. Instead, we learn
the dense parametric deformation model for each object category from 2D data.

3 Method

In this section and Figure[2] we describe the proposed representation and how to learn it.

3.1 The C3DM representation

Canonical map. Let I € R¥>*#*W be animage and Q C {1,..., H} x {1,..., W} be the image
region that contains the object of interest. We consider a canonical map v = ®(y; I) sending pixels
y €  to points on the unit sphere x € S?, which is topologically equivalent to any 3D surface
S C R? without holes. It can be interpreted as a space of indices or coordinates  that identify a dense
system of ‘landmarks’ for the deformable object category. A landmark, such as the corner of the left
eye in a human, is a point that can be identified repeatably despite object deformations. Note that the
index space can take other forms than S2, however the latter is homeomorphic to most surfaces of 3D
objects and has the minimum dimensionality, which makes it a handy choice in practice.

Deformation model. 'We express the 3D location of a landmark « as X (k; 1) = B(k)a(I), where
a(I) € RP are image-dependent deformation parameters and B(x) € R3**? is a linear operator
indexed by «. This makes B(k) an intrinsic property, invariant to the object deformation or viewpoint
change. The full 3D reconstruction S is given by the image of this map: S(I) = {B(k)a(I) : k €
S?}. The reconstruction X (y; I) specific to the pixel y is instead given by composition with the
canonical map:

X(y;I) = B(k)a(I), where k= ®(y;I). (1)

Viewpoint. As done in NR-SFM, we assume that the 3D reconstruction is ‘viewpoint-free’, meaning
that the viewpoint is modelled not as part of the deformation parameters (1), but explicitly, as a
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Figure 2: Detailed system overview. At test time, the image is passed through the network ® to obtain
the map of dense embeddings x € S2. The network B converts them individually to deformation
operators. In the meantime, the image is passed to the viewpoint network to predict the camera
orientation R and shape parameters c. Eq. (I)) combines these quantities to obtain 3D reconstruction
for each pixel within the object mask. At training time, sparse 2D keypoints are preprocessed with
C3DPO [44] to obtain “ground truth” camera orientation R* and shape parameters a*. These,
together with the C3DPO basis B*, are used in (@) to supervise the corresponding predicted variables.
On the right, three more loss functions are illustrated: reprojection loss (3)), cross-projection perceptual
loss (6)), and (8) aligning the camera orientation with average embedding direction.

separate rigid motion (R(I),t(I)) € SE(3). The rotation R is regressed from the input image in the
form proposed by Zhou et al. [[75]], and translation t(7) is found by minimizing the reprojection, see
Sectionfor details. We assume to know the perspective/ortographic camera model 7 : R? — R?
mapping 3D points in the coordinate frame of the camera to 2D image points (see sup. mat. for
details). With this, we can recover the coordinates y of a pixel from its 3D reconstruction X (y; I) as:

y = (R()X(y; I) + (1)) . (2)
Note that y appears on both sides of eq. (2); this lets us define the self-consistency constraint (3).

Texture. In addition to the deformation operator B(k), any intrinsic property can be descried in
a similar manner. An important example is reconstructing the albedo I(y) of the object, which we

model as:
I(y) = C(r;B(1)), w=2(y;I), 3)

where C(x; 3) maps a small number of image-specific texture parameters 3(I) € R’ to the color of
landmark . In Section 4.1 we use this model to transfer texture between images of different objects.

Implementation via neural networks. The model above includes several learnable functions that
are implemented as deep neural networks. In particular, the canonical map ®(7) is implemented
as an image-to-image convolutional network (CNN) with an R3*#>W input (a color image) and
an R3*H>W output (the spherical embedding). The last layer of this network normalizes each location
in /2 norm to project 3D vectors to S?. Functions «(I), 3(I) and R(I) predicting deformation,
texture and viewpoint rotation are also implemented as CNNs. Translation t is found by minimising
the reprojection, as explained below. Finally, functions B(x) and C'(x) mapping embeddings to their
3D deformation and texture models are given by multi-layer perceptrons (MLP). The latter effectively
allows x, and the resulting 3D and texture reconstruction, to have arbitrary resolution.

3.2 Learning formulation

In order to train C3DM, we assume available a collection of independently-sampled views of an
object category {1, n}ﬁ[:lEl Furthermore, for each view, we require annotations for the silhouette €2,,
of the object as well as the 2D locations of K landmarks Y,, = (y,,1,...,¥,x)- In practice, this

2“Independent” means that views contain different object deformations or even different object instances.



information can often be extracted automatically via a method such as Mask R-CNN [25] and
HRNet [55]. Note that we require to annotate only a small set of K" landmarks, whereas C3DM learns
a continuos (infinite) set of those. We use the deformation basis from an NR-SFM method as a prior
and add a number of consistency constraints for self-supervision, as discussed next.

NR-SFM Prior. Since our model generalizes standard parametric approaches, we can use any such
method to bootstrap and accelerate learning. We use the output of the recent C3DPO [44]] algorithm
A = (BE,VE o, RY) in order to anchor the deformation model B(x) in a visible subset V! of K
discrete landmarks, as well as the deformation and viewpoint parameters, for each training image I,,.

Note that, contrary to C3DM, C3DPO takes as input the 2D location of the sparse keypoints both at
training and test time. Furthermore, it can only learn to lift the keypoints for which ground-truth is
available at training time. In order to learn C3DM, we thus need to learn from scratch the deformation
and viewpoint networks (1) and R(T), as well as the continuous deformation network B(x). This
is necessary so that at test time C3DM can reconstruct the object in a dense manner given only the
image I, not the keypoints, as input. At training time, we supervise the deformation and viewpoint
networks from the C3DPO output via the loss:

* 1 * * *
Lpe(®, By, By 1Y, AY) = g Y 1By )= Billetwal a(l)—a || twrde(R(1); R),
kev*

4
where ||z || is the pseudo-Huber loss [15]] with soft threshold e and d, is a distance between rotations

Projection self-consistency loss. ~As noted in Section 2} the composition of egs. (I)) and (2) must
yield the identity function. This is captured by the reprojection consistency loss

Logo(@, B, 0, R Q.1) = min Y [5(6) =yl 3(6) = 7 (R() B(@(y: 1)) ) +t). (5)
yeQ

It causes the 3D reconstruction of an image pixel y, which is obtained in a viewpoint-free space, to
line up with y once the viewpoint is accounted for. We found optimizing over translation t in eq. (§)
to obtain t(I, 2, ®, B, a, R) based on the predicted shape to be more accurate than regressing it
directly. Refer to Appendix [C|in sup. mat. for optimization algorithm. We use the obtained value as the
translation prediction t(I), in particular, in eq. @), only implying the dependency on the predictors to
simplify the notation. We backpropagate gradients from all losses through this minimization though.

Apperance loss. Given two views I and I’ of an object, we can use the predicted geometry and
viewpoint to establish dense correspondences between them. Namely, given a pixel y € 2 in the first
image, we can find the corresponding pixel ¥ in the second image as:

§' = (R(') B@(y; 1) o) + (). (©)

This equation is similar to eq. (3)), in particular, the canonical map is still computed in the image I
to identify the landmark, however the shape « and viewpoint (R, t) are computed from another
image I’. Assuming that color constancy holds, we could then simply enforce I(y) ~ I'(3"), but
this constraint is violated for non-Lambertian objects or images of different object instances. We thus
relax this constraint by using a perceptual loss Lyercep, Which is based on comparing the activations
of a pre-trained neural network instead [72]]. Please refer to Appendix [B]in the sup. mat. for details.

Due to the robustness of the perceptual loss, most images I can be successfully matched to a fairly
large set Py = {I'} of other images, even if they contain a different instance of the object. To further
increase robustness to occlusions, large viewpoint differences, and other nuisance factors, inspired
by Khot et al. [33]], given a batch of training images, we compare each pixel in I only to the k < |P;|
images I’ in the batch that match the pixel best. This bring us to the following formulation:

‘ 1
LUk (o B o, R,t;Q,1,P;) = — min Loercen(®, B, R, t;y, I,1). (7
percep( 1) k%@cm:\@\:k[;} percep Y ) @

Learning the texture model. The texture model (C, 3) can be learned in a similar manner, by
minimizing the combination of the photometric and perceptual (7)) losses between the generated and
original image. Please refer to the supplementary material for specific loss formulations. We do not
back-propagate their gradients beyond the appearance model as it deteriorates the geometry.

2]l = e(+/1+ (]2]]/€)2 — 1); it behaves as a quadratic function of | z|| in the vicinity of 0 and a linear
one when ||z|| — oo, which makes it both smooth and robust to outliers. See sup. mat. for definition of d..
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Figure 3: Canonical mapping and texture transfer for CUB and Freiburg Cars. Given a target
image I (1 row), C3DM extracts the canonical embeddings k = ®(y; Ig) (2" row). Then, given
the appearance descriptor 3(14) of a texture image I 4 (4 row), the texture network C' transfers its
style to get a styled image I (y) = C(®y(I5); B(I4)) (3" row), which preserves the geometry of
the target image /. Note that we model the texture directly rather than warp the source image, so
even the parts occluded in the source image 14 can be styled (5" and 6™ columns).

Soft occlusion regularization. We introduce a soft occlusion model that ties the spherical embed-
ding space and camera orientation. It forces the model to use the whole embedding space and avoid
re-using its parts for the regions of similar appearance, such as left and right sides of a car. We achieve
it by aligning the direction of the mean embedding vector « with the camera direction, minimizing

1
where 7 = o Z (y; I). )
| | yGQ

E

‘Cemb—align(q)7 R; Q, I) = [O 0 1] R(I)

IRl

Bl

Mask reprojection loss. We observed that on some datasets like CUB Birds, the reconstructed
surface tends to be noisy due to some parts of the embedding space overfitting to specific images. To
prevent it interfering with other images, we additionally minimize the following simple loss function:

Lunask(B, 0, R, £: ) :/ |[7T(R B(k) a+t) ¢ Qﬂ dr, )
.

where we approximate the integration by taking a uniform sample of 1000 points + on a sphere.

4 [Experiments

Implementation details. We build on the open-source implementation of C3DPO for pre-
processing’|and set a € R19, 3 € R'2®, The canonical map network ® uses the Hypercolumns
architecture [23]) on top of ResNet-50 [24]], while basis and texture networks B and C' are MLPs. See
Appendices[A]and[Fin sup. mat. for description of the architecture, hyperparameters and optimization.

Benchmarks. We evaluate the method on a range of challenging datasets. We use C3DM to
generate from each test image: (1) a full 360° shape reconstruction as a point cloud {B(x)a(I) :
k € K}, where K consists of 30k sampled embeddings from random training set images, and (2) a
depth map from the estimated image viewpoint obtained for each pixel y € €2 as the coordinate z of
RX(y; I). We compare the full reconstructions against ground-truth point clouds using symmetric
Chamfer distance dp (after ICP alignment [10]) and, whenever the dataset has depth maps or
calibrations to project the ground-truth meshes, predicted depth maps against ground-truth depth
maps as the average per-pixel depth error dgepn. In particular, to compute the symmetric Chamfer

distance between the predicted and ground-truth point clouds dp (C’ , (), we first correct the scale

*https://github.com/facebookresearch/c3dpo_nrsfm
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ambuiguity by normalising the variance of the predicted point cloud to match ground truth. Then, we
align them with ICP to obtain the C' = sRC + t rigidly aligned with C'. We define Chamfer distance
as the mean ¢2 distance from each point in C to its nearest neighbour in C' and make it symmetric:

1 e
| > ;{mréIIX—XII- (10)
S

~ 1 ~ - -
dpa(C,C) = 5(czCh(c,C)+dCh(C, 0)), where dey(C,C) = i
XeC

To compute the average per-pixel error between the predicted and ground-truth depth maps

ddepth(f), D), we first normalize the predicted depth to have the same mean and variance as ground
truth within the object mask 2 in order to deal with the scale ambuiguity of 3D reconstruction under
perspective projection. Then, we compute the mean absolute difference between the the resulting

depth maps within  as daepin(D, D) = fr 2y cqr [Dy — Dy

We evaluate on Freiburg Cars [52] dataset, containing videos of cars with ground truth SEM/MVS
point clouds and depth maps reporting dp¢ and dep,. In order to prove that C3DM can learn from
independent views of an object category, we construct training batches so that the appearance loss (6)
compares only images of different car instances. We further compare our model to the previously
published results on a non-rigid category of human faces, training it on CelebA [39]] and testing it
on Florence 2D/3D Face [9]. The latter comes with ground-truth point clouds but no depth maps,
so we report dp for the central portion of the face. As viewpoints don’t vary much in the face data,
we also consider CUB-200-2011 Birds [64]], annotated with 15 semantic 2D keypoints. It lacks 3D
annotations, so we adopt the evaluation protocol of CMR [30] and compare against them qualitatively.
We compare to CMR using dp,; on 4 categories from Pascal3D+ [67]], which come with approximate
ground-truth shapes obtained by manual CAD model alignment. See Appendix [E] for details.

Baseline. Our best direct competitor is CMR [30]. For CUB, we use the pre-trained CMR models
made available by the authors, and for the other datasets we use their source code to train new models,
making sure to use the same train/test splits. For depth evaluation, we convert the mesh output of
CMR into a depth map using the camera parameters estimated by CMR, and for shape evaluation, we
convert the mesh into a point cloud by uniformly sampling 30k points on the mesh.

4.1 Evaluating the canonical map

First, we evaluate the learned canonical map @y (I) qualitatively by demonstrating that it captures
stable object correspondences. In row 2 of Figure 3] we overlay image pixels with color-coded 3D
canonical embedding vectors k = ®y(I). The figure shows that the embeddings are invariant to
viewpoint, appearance and deformation. Next, we make use of the texture model (3) to perform
texture transfer. Specifically, given a pair of images (14, I5), we generate an image Io(y) =
C(®y(Ip); B(I4)) that combines the geometry of image Ip and texture of image I4. Row 3 of
Figure [3|shows texture transfer results for several pairs of images from our benchmark data.

4.2 Evaluating 3D reconstructions

Ablation study. In Table[l] we evaluate the quality of 3D reconstruction by C3DM trained with
different combinations of loss functions. It shows that each model components improves performance

Active Losses £ | Fl.Face | Frei.Cars Dataset | CMR [30] ~ C3DM
repro  basis gleirrgé(p Zﬁ‘gbn' ‘ dpci ‘ dacptn dpel F10: Face | 13.09 5.57
% % v 6582 | 0.548 0247 Frei.Cars | 0.20/0.50  0.12/0.31
v v ve 7.406 0.550 0.462 P3D Plane 0.022 0.019
v Ve v 5.647 0.361 0.141 P3D Chair 0.049 0.043
v v v 5.592 0.498 0.186 P3D Car 0.028 0.028
v ve v v 5.574 0.311 0.123 P3D Bus 0.037 0.036

Table 1: 3D reconstruction accuracy for different vari- Table 2: dpg on Freiburg Cars, Flo-
ants of C3DM on Freiburg Cars and Florence Face. rence Face, and Pascal 3D+ comparing
We evaluate the effect of disabling losses (3)), (7), (8), and our method to CMR [30]. For Frei. Cars,
the first term in (@), one-by-one. dyeptn 18 also reported after slash.
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Figure 4: Visual comparison of the results on Freiburg Cars (top two rows), face images (left
column) and CUB Birds datasets (right column). For each dataset, we show the source im-
age (1% column), C3DM and CMR reconstructions from the original viewpoint (view #1, 2" and
4™ columns, respectively) and from an alternative viewpoint (view #2, 3'¢ and 5" columns).

across all metrics and datasets. The contribution of the appearance loss (7) is higher for cars, where
the keypoints are sparse; for faces, on the other hand, the network can get far by interpolating
between the embeddings of the 98 landmarks even without appearance cues. The camera-embedding
alignment loss (8) is also more important for cars because of the higher viewpoint diversity.

Comparison with the state-of-the-art. Table El compares the Chamfer distance d, and depth
error dgepn (Where applicable) of C3DM against CMR [30]. On Freiburg Cars and Florence Face,
our method attains significantly better results than CMR. C3DM produces reasonble reconstructions
and generally outperforms CMR on four categories from Pascal3D+ with big lead on chairs. The
visualisations in Figure [ confirm the trend: C3DM is better at modelling fine details.

On Freiburg Cars, our method can handle perspective distortions better and is less dependent on
instance segmentation failures since it does not have to satisfy the silhouette reprojection loss. On
CelebA, CMR, which relies on this silhouette reprojection loss, produces overly smooth meshes that
lack important details like protruding noses. Conversely, C3DM leverages the keypoints lifted by
C3DPO to accurately reconstruct noses and chins. On CUB Birds, it is again apparent that C3DM
can reconstruct fine details like beaks. See Appendix [G|and videos for more visual results.

5 Conclusions

We have presented C3DM, a method that learns under weak 2D supervision to densely reconstruct
categories of non-rigid objects from single views, establishing dense correspondences between them
in the process. We showed that the model can be trained to reconstruct diverse categories such as cars,
birds and human faces, obtaining better results than existing reconstruction methods that work under
the same assumptions. We also demonstrated the quality of dense correspondences by applying them
to transfer textures. The method is still limited by the availability of some 2D supervision (silhouettes
and sparse keypoints) at training time. We aim to remove this dependency in future work.



Potential broader impact

Our work achieves better image-based 3D reconstruction than the existing technology, which is
already available to the wider public. While we outperform existing methods on benchmarks,
however, the capabilities of our algorithm are not sufficiently different to be likely to open new
possibilities for misuse.

Our method interprets images and reconstructs objects in 3D. This is conceivably useful in many
applications, from autonomy to virtual and augmented reality. Likewise, it is possible that this
technology, as any other, could be misused. However, we do not believe that our method is more
prone to misuse than most contributions to machine learning.

In particular, there could be some concerns that 3D reconstructions could be used for extracting
biometrics or for re-enacting. However, our reconstruction technique is generic and, as such, there
exist specialized methods that achieve better results on these specific tasks, e.g. for human faces. For
example, it would be next to impossible to recognize an identity from our geometric reconstructions
alone due to imprecisions in the fine details of the geometry.

As for any research output, there is an area of uncertainty on how our contributions could be
incorporated in future research work and the consequent impact of that. We believe that our advances
are methodologically significant, and thus we hope to have a positive impact in the community,
leading to further developments down the line. However, it is very difficult to predict the nature of all
such possible developments.



A Architecture details

Figure [V]shows the backbone of our architecture, together with the basis and texture predictors B
and C'. The trunk of C3DM consists of a Feature Pyramid Network pre-trained on ImageNet. In more
detail, Conv-Upsample blocks are attached to the outputs of each of the Res1, Res2, Res3 and Res4
layers of a ResNet50. Each Conv-Upsample outputs a tensor with the spatial resolution of the first
auxiliary branch that takes Res1 as an input. The four tensors are then summed and ¢2-normalized in
order to produce the canonical embedding tensor k.

The insets of Figure[V]|show the architecture of the basis and texture networks B(x) and C(k, 3(1)).
The networks follow the C3DPO [44] architecture. Each of them consists of a fully connected (FC)
layer, followed by three fully connected residual blocks (shown in detail in the lower-right inset) and
another fully connected layer adapting the output dimensionality. The LayerNorm layers [8] used in
these networks only perform ¢? normalization across channels, without using trainable parameters.
The basis network takes as input the map of 2D canonical embeddings «, while the texture network
concatenates them with the same texture descriptor 3 to get the 130-dimensional vector for each
pixel. The basis network outputs the 30-dimensional vector for each pixel (10 3-dimensional basis
vectors), while the texture network outputs 3D per-pixel colors.

Figure [V]|extends the diagram with the computations specific to the training time. For supervision,
the training also runs C3DPO on 2D keypoints and uses the predictions and bases to define the
NR-SFM prior loss @). The diagram also shows the reprojection consistency loss (3)), cross-image
perceptual loss (6), which requires the viewpoint and shape predictions for other images in the batch,
camera-embedding alignment loss (8], and the texture model loss (13).

Batch sampling. In each training epoch, we sample 3000 batches of 10 random images (adding a
constraint on Freiburg Cars that they don’t come from the same sequence). We optimize the network
using SGD with momentum, starting with learning rate 0.001 and decreasing 10x whenever the
objective plateaus. We stop training after 50 epochs.

Since most datasets are biased in terms of the viewpoints, e.g. birds are less likely to be photographed
from the front or back than from the side, we apply inverse propensity correction on the distribution
of 1D rotations to ensure uniform coverage. We correct the distribution of rotations in the horizontal
plane only, assuming that the pitch varies less than the azimuth, which is true for most object-
centric datasets. In particular, we first find the upward direction as an eigenvector of the rotation
axes extracted from the camera orientations extracted by NR-SFM from the training set: {R};}.
Then we compute the azimuth a(R},) as the rotation component around the estimated upward axis.

The sampling weight for an image I, is thus found as (p(a(R};))) ~! where the distribution pis
approximated by a histogram of 16 bins. Note that we only need to do this at training time when
NR-SFM viewpoint predictions are available; at test time, the networks can take a single image.

To compute the min-k cross-image perceptual loss (6), we treat the first image I in the batch as a target
and warp the rest of the images using their estimated camera and shape parameters R(I"), t(I"), a(I").
For each pixel, we average the distances to k = 6 closest feature maps as per eq.

Implementation. We implemented C3DM using Pytorch framework. We run training on a single
NVidia Tesla V100 GPU with 16 Gb of memory. Training for full 50 epochs takes around 48 hours.

Runtime analysis On a single gpu, the feedforward pass of our network takes one average 0.111
sec per image.

B Details of the photometric and perceptual losses

To enforce photometric consistency, we can use the following loss:
Lonoo(I;2,1) =Y | T'(y V) le- (11)
yeQ
Here I and I’ are two images, €2 is the region of image I that contains the object (i.e.the object mask).

To capture higher-level consistency between images, in particular in the cross-image consistency
loss (6) between the target image and warped reference image, we use perceptual loss Lpercep that
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Figure V: The detailed architecture of prediction-time C3DM flow. All networks share the
common ResNet50 backbone. Camera orientation, shape and texture parameters are regressed from
the final residual layer. The embedding prediction network ® processes outputs of the four residual
blocks with the Conv-Upsample subnetwork shown in the left inset, then sums and normalises their
outputs to obtain the map of spherical embeddings . They are passed through basis and texture
networks that share the architecture, which is shown in the middle and right insets. Finally, the
predicted basis vectors are multiplied by shape parameters « to obtain 3D reconstruction of the
visible points.

compares the activations of a pre-trained neural network [72]]. Specifically, we compute pseudo-Huber
loss between the activations of a VGG network, averaged over several layers. The perceptual loss
uses the pretrained VGG-19 network [54]. Let ¥, (1) be the layer [ activations of VGG-19 fed by the
image I. We then define the perceptual loss as

LoeeonI3 1) = > > |[upsample(W,(1') = 0i(1))y]
y€Q1€{0,5,10,15}

; 12)

€

where upsample() interpolates the feature map to the match the resolution of the network input.

We can now formally define the optimisation problem for the texture model dwscribed in Section 3.1}
Given the input image I and 2D embeddings for all its pixels &, it re-produces the image I’ using
I'(y) = C(k(y); B(I)). The weights of neural networks implementing C' and 3 are found by
minimising

Etex(ll; Qa I) = wphotn ;‘)s}foto(jl; Qa I) + wpercep‘c;ee);cep(ll; Qa I) (13)
Please note again that the gradients of L are not propagated beyond & to preserve its sole dependence
on geometry.

C Camera models and ray-projection loss

Camera models. We have to define a camera model 7 : R® — R? mapping 3D points in the
coordinate frame of the camera to 2D image points in order to compute reprojection and photometric
losses. If the camera calibration is unknown (as in CelebA, Florence Face, CUB, Pascal 3D+ datasets),
we use an orthographic camera w(X) = [z1, 2] T where X = [z, 72, 23] . In this case, we also
set t = 0 as translation can be removed by centering the 2D data [44] in pre-processing.

If the camera calibration is known (in Freiburg Cars), we can also use a more accurate perspective
camera model instead:

xr3 [T2

(%)= L {“] : (14)
where f is the focal length.

Further to Section [3.1] here, we describe additional implementation details that were important for
the success of the perspective projection model on the Freiburg Cars dataset.
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Figure VI: The training time C3DM flow, where the backbones showed in Figurem are collapsed
to the boxes with ellipses. We supervise the predicted basis map with C3DPO bases at keypoint
locations. At training time, we also run C3DPO on 2D keypoints to supervise shape parameters and
camera orientation. Embedding alignment loss acts on the estimated camera orientation and average
spherical embeddings. We project the 3D reconstruction using the estimated camera parameters to
define the reprojection consistency loss. To define the cross-image perceptual consistency loss, we
run our network on another image (in practice, the other images in the batch are used) and use its
shape and camera parameters to project the estimated basis vectors and compare with that image.
Finally, we supervise the output of the texture model with the original image.

Ray-projection loss For perspective model, we have also found an improvement that significantly
stabilizes the C3DPO algorithm that we use to constrain C3DM. The idea is to modify reprojection
loss to measure, instead of the distance between 2D projections y and ¥, the distance of the 3D point
X(y) to the line passing through y and the camera center. The advantage is removing the division
embedded in the perspective projection equation (T4).

In order to minimize the reprojection error (5) under the perspective projection model, a naive
implementation would minimize the following perspective re-projection loss:

Lo (@, 1) =Y |lmro(Xee(y) - v, (15)
yeQ

where X ¢(y) = RX(y) + t is the 3D point extracted from pixel y and expressed in the coordinate
frame of the camera of the image I,,. Unfortunately, we found that the division in the perspective
projection formula 77 ¢ = I—f3 [1 23] " leads to unstable training. This is due to exploding gradient
magnitudes caused by 3D points X predicted to lie too close to the camera projection plane. While
this could be extenuated by clamping the points to lie in a safe distance from the camera plane, due to
the non-linearity of the projection gradient, the re-projection loss (T3) still would not converge stably.

In order to remove the gradient non-linearity, we alter the re—projection loss to the ray-projection loss:

L8200 = HXRt [r(y) Xnely H (16)
yeQ

where r(y) stands for the direction vector of the projection ray passing through the pixel y in the
image I:

K 'y y21]7
1K yr y2 1T
where K is the instrinsic camera calibration matrix. Intuitively, eq. (I6) minimizes the orthogonal
distance between the the estlmated point X ¢(y) and its projection on the ground truth projection
ray r(y). We notice that eq. (16) is linear in X ¢ on infinity and quadratic in the compact region
around the optimum, hence the magnitude of the gradient is bounded from above. We found this
addition important for convergence of C3DM.

r(y) =



Perspective projection for C3DPO In order to optimize eq. (I6), a C3DPO model [44] trained
using the perspective projection model is required. Since the original C3DPO codebase only admits
orthographic cameras, we will describe additions to the pipeline that enable training a perspective
model on Freiburg Cars.

C3DPO optimizes a combination of canonicalization and reprojection losses. To this end, we replace
the original C3DPO reprojection loss (eq. (4) in [44]]) with the ray-projection loss (T6). Additionally,
unlike in the orthographic case, one has to determine the full 3DoF position of the camera w.r.t. the
object coordinate frame. While it is possible to let C3DPO predict translation as an additional output
of the network, we avoid over-parametrization of the problem by estimating camera translation as a
solution to a simple least-squares problem.

In more detail, we exploit the locally quadratic form of the ray-projection loss and formulate the
translation estimation problem that allows for a closed-form solution. Assuming that C3DPO, given
a list of input 2D landmarks y, ..., ¥ -, predicts a camera rotation matrix R, the translation can be
obtained as a solution to the following problem:

K

t* = argming Y _ |[Xpe(ys) — 1) Xee(yr)r(ye)|
=1

After a few mathematical manipulations, we arrive at the following closed-form expression for t*:

K —1r K
e = | S| [0 - x| a7
k=1 k=1

where I'y, = r(y,,)r(y,) " is an outer product of r(y, ) with itself. Using eq. , we can estimate
the camera translation online during the SGD iterations of the C3DPO optimization. Note that the
matrix inverse in eq. is not an issue because of the small size of the matrix being inverted (3x3)
and the possibility to backpropagate through matrix inversion using modern automatic differentiation
frameworks (PyTorch).

D Rotation loss

We use the distance between rotation matrices d. (R, R*) as part of the loss (@). We aim to penalise
large angular distance, while avoiding the exploding gradients of inverse trigonometric functions.
First, we note that the relative rotation can be computed as RT R*. Next, converting it to the axis-
angle representation lets us compute the angular component as § = arccos (3(Tr(R" R*) — 1)).
Using the fact that arccos is monotonically decreasing, we strip it and apply an affine transform to
make sure the loss achieves the minimum at 0:

3—Tr(RTR")

de(R,R*) =1—cosf = 5

(18)

E Datasets

Freiburg Cars (FrC). In order to test our algorithm in a low-noise setting, we consider the Freiburg
cars dataset [S2]]°| containing walkaround videos of 52 cars. While this dataset contains videos of the
cars, in order to test the ability of the photometric loss (7) to reconstruct objects even if the views are
independent, we pair each pivot image I with a selection of other images P; extracted from different
video sequences.

Following Novotny et al. [43] 42], we set out 5 sequences for validation (indexed 22, 34, 36, 37, 42).
The training set contains 11,162 training frames and 1,427 validation frames. For evaluation, we also
use their ground-truth 3D point clouds, but we only retain the 3D points that, after being projected
into each image of a given test sequence, fall within the corresponding segmentation mask. Each
point cloud is further normalized to zero-mean and unit variance along the 3 coordinate axes. Please
refer to [43]] for details.

https://github.com/lmb-freiburg/unsup-car-dataset
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As an input to our method, we use the pre-trained Mask R-CNN of [25] to extract the segmentation
masks and the HRNet [32] trained on PASCAL 3D+ [68] to extract the 2D keypoints. Hence, all
inputs to our method are extracted automatically. We excluded the frames where a car was detected
with a confidence below a threshold.

We report the Chamfer distance dj between the ground truth and the predicted point clouds after
rigid alignment via ICP [10]. The point cloud predictions are obtained as explained in the Benchmarks
section of the main text, with | B| = 30k. Furthermore, we evaluate the quality of our depth predictions
by measuring the average depth distance dgepn between the point cloud formed by un-projecting the
predicted depth map and the visible part of the ground truth point cloud.

CelebA and Florence faces (FF). The FrC dataset contains deformation between object instances,
but each object itself is rigid. In order to compare the ability of our method to handle instance-level
non-rigid deformations with the CMR’s, we also run the method on images of human faces; in
particular, we train our algorithm on the training set of CelebA dataset [39f] containing 161,934
face images and test it on the Florence 2D/3D Face dataset [9ﬂ The latter contains videos of
53 people and their ground truth 3D meshes, which we can use to assess the quality of our 3D
reconstructions. Following a standard practice, we crop each 3D mesh to retain points that lie within
100mm distance from the nose tip. We extract 98 semantic keypoints for each training and test face
using the pre-trained HRNet detector of [S5].

For evaluation on FF, five frames are uniformly sampled from each test sequence. We then use our
network to reconstruct each test face in 3D and evaluate d; after ICP alignment. Since the extent
of the predicted face differs from the ground truth, we first pre-align the prediction by registering a
3D crop that covers the convex hull of the 98 semantic keypoints. The 100mm nose-tip crop is then
extracted from the pre-aligned mesh and is aligned for the second time. dgepim i not reported for FF
since the dataset does not contain ground truth per-frame depth.

CUB-200-2011 Birds. We evaluate our method qualitatively on the CUB Birds dataset [64ﬂ which
consists of 11,788 still images of birds belonging to 200 species. Each image is annotated with 15
semantic keypoints. As done in [44], for evaluation we use detections of a pre-trained HRNet. The
dataset is challenging mainly due to significant shape variations across bird species, in addition to
instance-level articulation. Since there is no 3D ground truth for that dataset, we qualitatively compare
the quality of 3D reconstruction to the ones of CMR [30]. We also use the same training/validation
split as CMR.

Pascal3D+. We provide additional comparison to CMR on four categories of Pascal3D+ [67ﬂ
aeroplane, consisting of 1194 training and 1135 test images, bus (674 training / 657 test), car (2765
training / 2713 test), and chair (650 training / 666 test). It has been manually annotated by rigidly
aligning one of category-specific CAD models, so the annotation has noisy and biased shape and pose.
Since the original CMR codebase contains models for only two classes, we trained CMR models on
all considered classes ourselves (using their codebase) and test on the corresponding validation sets.
We report only dpi, since the depth maps obtained by projecting with noisy cameras are unreliable.

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
"http://www.micc.unifi.it/masi/research/ffd/ ©Copyright 2011-2019 MICC — Media Integra-
tion and Communication Center, University of Florence. The Florence 2D/3D Face Dataset.
$http://www.vision.caltech.edu/visipedia/CUB-200-2011.html
https://cvgl.stanford.edu/projects/pascal3dd.html
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F Hyperparameters used in experiments

To sum up, during training, we optimize the following weighted sum of loss functions:

L(®,B,a, R, t,[;Q 1, P, A") = wplp(®, B, a, Ry 1Y, A")+
wreproﬁrepro(q)a B; «, R; Q, I)+
whams Lok (@, B, o, R, t;Q, 1, Pr)+ (19
wemb—alignﬁemb—align(q)a R’ Qa I)+
wmaskﬁmask(Ba o, Ra tv Q)+

‘Clex(f; Q, I)

We set most weights such that the corresponding term has a magnitude of about 1 in the beginning of
training. We set wyr = 1, wo = 1, Wrepro = 1 for the perspective camera model and wyepr, = 0.01
for the orthographic one, where the error is measured in pixels rather than world units. For the

tex tex — 3 3 :
components of texture loss, we set wyp, = 1, and wygd.., = 0.1. Likewise, we set the weight for

the geometry perceptual loss w;‘)‘;ir‘;‘; = 0.1. We ran grid search for the camera-related parameters

within the following ranges: wr € {1,10}, and Wemp-aiign € {1,10}. We enable L, for CUB
Birds, Faces, and Pascal3D+ aeroplanes and chairs with weight wpasx = 1.

G Additional qualitative results

Figures [VIIand [VII]| contain additional single-view reconstruction results. We can see that C3DM is
robust to occlusions and instance segmentation failures: the 3D shape is reasonably completed in
those cases. Furthermore, Figures [[X]and [X]have been populated with supplemental texture transfer
results. Note that all images are taken from the test set, and images from the same FrC sequence do
not co-occur in training and test sets. We also invite the readers to watch the attached videos of the
rendered reconstructions to better evaluate 3D reconstruction quality.
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Figure IX: Canonical mapping and texture transfer for CUB. Given a target image Ig (1** row),
C3DM extracts the canonical embeddings k = ®(y; Ig) (2" row). Then, given the appearance
descriptor 3(14) of a texture image 14 (4" row), the texture network C transfers its style to get a

styled image Ic(y) = C(®y(Ip); B(14)) (3™ row), which preserves the geometry of the target
image Ip.
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Figure X: Canonical mapping and texture transfer for Freiburg cars. Given a target image Ip
(1% row), C3DM extracts the canonical embeddings k = ®(y;Iz) (2" row). Then, given the
appearance descriptor 3(14) of a texture image I 4 (4" row), the texture network C transfers its style
to get a styled image I (y) = C(®y(I5); B(14)) (3™ row), which preserves the geometry of the
target image Ip.
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