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Figure 1: Our method learns a 3D model of a deformable object category from 2D keypoints in unconstrained images. It
comprises a deep network that learns to factorize shape and viewpoint and, at test time, performs monocular reconstruction.

Abstract

We propose C3DPO, a method for extracting 3D mod-
els of deformable objects from 2D keypoint annotations
in unconstrained images. We do so by learning a deep
network that reconstructs a 3D object from a single view
at a time, accounting for partial occlusions, and explic-
itly factoring the effects of viewpoint changes and ob-
ject deformations. In order to achieve this factorization,
we introduce a novel regularization technique. We first
show that the factorization is successful if, and only if,
there exists a certain canonicalization function of the re-
constructed shapes. Then, we learn the canonicalization
function together with the reconstruction one, which con-
strains the result to be consistent. We demonstrate state-
of-the-art reconstruction results for methods that do not
use ground-truth 3D supervision for a number of bench-
marks, including Up3D and PASCAL3D+. Source code
has been made available at https://github.com/
facebookresearch/c3dpo_nrsfm.

1. Introduction
3D reconstruction of static scenes is mature, but the

problem remains challenging when objects can deform due
to articulation and intra-class variations. In some cases, de-
formations can be avoided by capturing multiple simultane-
ous images of the object. However, this requires expensive
hardware comprising several imaging sensors and only pro-
vides instantaneous 3D reconstructions of the objects with-
out modelling their deformations. Extracting deformation
models requires establishing correspondences between the
instantaneous 3D reconstructions, which is often done by
means of physical markers. Modern systems such as the
Panoptic Studio [14] can align 3D reconstructions without
markers, but require complex specialized hardware, making
them unsuitable for use outside a specialized laboratory.

In this paper, we thus consider the problem of recon-
structing and modelling 3D deformable objects given only
unconstrained monocular views and keypoint annotations.
Traditionally, this problem has been regarded as a gener-
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alization of static scene reconstruction, and approached by
extending Structure from Motion (SFM) techniques. Due to
their legacy, such Non-Rigid SFM (NR-SFM) methods have
often focused on the geometric aspects of the problem, but
the quality of the reconstructions also depends on the ability
to model statistically the object shapes and deformations.

We argue that modern deep learning techniques may be
used in NR-SFM to capture much better statistical models
of the data than the simple low-rank constraints employed
in traditional approaches. We thus propose a method that
reconstructs the object in 3D while learning a deep net-
work that models it. This network is inspired by recent
approaches [21, 16, 30, 10, 18] that accurately lift 2D key-
points to 3D given a single view of the object. The differ-
ence is that our network does not require 3D information
for supervision, but is instead trained jointly with 3D recon-
struction from 2D keypoints.

Our model, named C3DPO, has two important innova-
tions. First, it performs 3D reconstruction by factoring
the effects of viewpoint changes and object deformations.
Hence, it reconstructs the 3D object in a canonical frame
that registers the overall 3D rigid motion and leaves as resid-
ual variability only the motion “internal” to the object.

However, achieving this factorization correctly is non-
trivial, as noted extensively in the NR-SFM literature [40].
Our second innovation is a solution to this problem. We ob-
serve that, if two 3D reconstructions overlap up to a rigid
motion, they must coincide (since the reconstruction net-
work should remove the effect of a rigid motion). Hence,
any class of 3D shapes equivalent up to a rigid motion must
contain at most one canonical reconstruction. If so, there
exits a “canonicalization” function that maps elements in
each equivalent class to this canonical reconstruction. We
exploit this fact by learning, together with the reconstruc-
tion network, a second network that performs this canoni-
calization, which regularizes the solution.

Empirically, we show that these innovations lead to a
very effective and robust approach to non-rigid reconstruc-
tion and modelling of deformable 3D objects from uncon-
strained 2D keypoint data. We compare C3DPO against
several traditional NR-SFM baselines as well as other ap-
proaches that use deep learning [16, 21]. We test on a num-
ber of benchmarks, including Human3.6M, PASCAL3D+,
and Synthetic Up3D, showing superior results for methods
that make no use of ground-truth 3D information.

2. Related work

There are several lines of work which address the prob-
lem of 3D shape and viewpoint recovery of a deforming
object from 2D observations. This section covers relevant
work in NR-SFM and recent deep-learning based methods.

NR-SFM. There are several solutions to the NR-SFM
problem which can recover the viewpoint and 3D shape
of a deforming object from 2D keypoints across multiple
frames [4, 6, 5, 9], the majority of which are based on Bre-
gler’s factorization framework [6]. However the NR-SFM
problem is severely under constrained as both the camera
and 3D object are moving along with the object deform-
ing. This poses a challenge in correctly factoring the view-
point and shape [40], and additional problems with miss-
ing values in the observations. Priors about the shape and
the camera motion are employed to improve conditioning
of the problem, including the use of low-rank subspaces in
the spatial domain [3, 11, 9, 43], temporal domain, for
example, fitting 2D keypoint trajectories to a set of pre-
defined DCT basis functions [4, 5], spatio-temporal do-
main [1, 12, 22, 23], multiple unions of low-rank sub-
spaces [43, 2], learning an overcomplete dictionary of basis
shapes from 3D motion capture data and imposing an L1
penalty on basis coefficients [41, 42] and imposing Gaus-
sian priors on the shape coefficients [33].

Many of these approaches however, as we have empir-
ically verified, are not scalable and can only reliably re-
construct datasets of few thousands of images and hun-
dreds of keypoints. Furthermore, many of them require key-
point correspondences for the same instance from multiple
images from a monocular view or from multi-view cam-
eras. Finally, in contrast to our method, using the listed
approaches it is difficult or computationally expensive to
reconstruct new test samples after training on a fixed col-
lection of training shapes.

Category specific 3D shapes. Also related are methods
that reconstruct shapes of a visual object category, such
as cars or birds. [8] is an early work that learns a mor-
phable model of dolphins from 2D keypoints and segmenta-
tion masks. Using similar supervision, Vicente et al. [37, 7]
reconstruct the categories of PASCAL VOC. An important
part of the pipeline is an initial SFM algorithm which re-
turns a mean shape and camera matrices of each object cat-
egory. Similarly, Kar et al. [18] utilize an NR-SFM method
for reconstructing categories from PASCAL3D+. [27] pro-
posed the first purely image-driven method for single-view
reconstruction of rigid object categories. Most recently,
Kanazawa et al. [16] train a deep network capable of learn-
ing both shape and texture of deformable objects. The com-
monality among the aforementioned methods is their re-
liance on the initial SFM/NR-SFM step which can often
fail. Our method overcomes this problem by learning a
monocular shape predictor in a single step without any ad-
ditional, potentially unreliable, preprocessing steps.

Weakly supervised 3D human pose estimation. Our ap-
proach is related to weakly supervised methods that lift
2D human skeleton keypoints to 3D given a single input
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Figure 2: An overview of C3DPO. The lower branch learns monocular 3D reconstruction by minimizing the re-projection
error `1. The upper branch learns to factorize viewpoints and internal deformations by the means of the canonicalization loss.

view. Besides the fully supervised methods [25, 26], sev-
eral works have explored multi-view supervision [20, 29,
31], ordinal depth supervision [28], unpaired 2D-3D data
[30, 36, 41, 15] or videos [17] to alleviate the need for full
2D-3D annotations. While these auxiliary sources of super-
vision allow for compelling 3D predictions, in this work we
use only inexpensive 2D keypoint labels.

Closer to our supervisory scheme, [21, 10] recently pro-
posed a method that rotates the 3D-lifted keypoints into new
views and validates the resulting projections with an adver-
sarial network that learns the distribution of plausible 2D
poses. However, both methods require all keypoints to be
visible in every frame. This restricts their use to ‘multi-
view’ datasets such as Human3.6M. In addition to the 2D
keypoints, [10] use the intrinsic camera parameters, and
3D ground truth data to generate new synthetic 2D views,
which leads to substantially better quantitative results at the
cost of a greater level of supervision.

To conclude, our contribution differs from prior work as
it 1) recovers both 3D canonical shape and viewpoint using
only 2D keypoints in a single image at test time, 2) uses
a novel self-supervised constraint to correctly factorize 3D
shape and viewpoint, 3) can handle occlusions and missing
values in the observations, 4) works effectively across mul-
tiple object categories.

3. Method

We start by summarizing some background facts about
SFM and NR-SFM and then we introduce our method.

3.1. Structure from motion

The input to structure from motion (SFM) are tuples
yn = (yn1, . . . , ynK) ∈ R2×K of 2D keypoints, repre-
senting N views y1, . . . , yn of a rigid object. The views
are generated from a single tuple of 3D points X =
(X1, . . . , XK) ∈ R3×K , called the structure, and N rigid
motions (Rn, Tn) ∈ SO(3) × T (3). The views, the
structure, and the motions are related by equations ynk =
Π(RnXk + Tn) where Π : R3 → R2 is the camera pro-
jection function. For simplicity of exposition we consider
an orthographic camera. In this case, the projection func-
tion is linear and given by matrix Π =

[
I2 0

]
where

I2 ∈ R2×2 is the 2D identity matrix and the projection
equation ynk = ΠRnXk + ΠTn is also linear. If all key-
points are visible, they can be centered together with the
structure, eliminating the translation from this equation (de-
tails in the supplementary material). This yields the simpli-
fied system of equations ynk = MnXk, where Mn = ΠRn
are the camera view matrices, or viewpoints. The equations
can be written in matrix form as

Y =

 y11 . . . y1K
...

. . .
...

yN1 . . . yNK

, M =

M1

...
MN

, Y︸︷︷︸
2N×K

= M︸︷︷︸
2N×3

X︸︷︷︸
3×K

.

(1)
Hence, SFM can be formulated as factoring the views Y
into viewpoints M and structure X . This factorization is
not unique, resulting in a mild reconstruction ambiguity, as
discussed in supplementary material.



3.2. Non-rigid structure from motion

The non-rigid SFM (NR-SFM) problem is similar to the
SFM problem, except that the structureXn is allowed to de-
form from one view to the next. Obtaining a non-trivial so-
lution is only possible if such deformations are constrained
in some manner. The simplest constraint is a linear model
Xn = X(αn;S), expressing the structure Xn as a small
vector of view-specific pose parameters αn ∈ RD and a
view-invariant shape basis S ∈ R3D×K :

X(αn;S) = (αn ⊗ I3)S (2)

where αn is a row vector and ⊗ is the Kronecker prod-
uct. We can expand the equation for individual points as
Xnk =

∑D
d=1 αndSdk where Sdk ∈ R3 is a shorthand for

the subvector S3d−2:3d,k. We can also extend it to all points
and poses as X = (α⊗ I3)S ∈ R3N×K where α ∈ RN×D
encodes a pose per row.

Given multiple views of the points, the goal of NR-
SFM is to recover the views, the poses, and the shape basis
from observations ynk = Π(Rn

∑D
d=1 αndSdk + Tn). As

in SFM, for orthographic projection the translation can be
removed from the equation by centering, and NR-SFM can
be expressed as a multi-linear matrix factorization problem:

Y︸︷︷︸
2N×K

= M̄︸︷︷︸
2N×3N (sparse)

( α︸︷︷︸
N×D

⊗ I3) S︸︷︷︸
3D×K

, (3)

where the N camera view matrices are contained in the
block-diagonal matrix M̄ = diag(M1, . . . ,MN ). Like
SFM, this factorization has mild ambiguities, discussed in
the supplementary material.

3.3. Monocular motion and structure estimation

Once the shape basis S is learned, model (3) can be used
to reconstruct viewpoint and pose given a single view Y
of the object, yielding monocular reconstruction. However,
this still requires solving a matrix factorization problem.

For C3DPO, we propose to instead learn a mapping Φ
that performs this factorization in a feed-forward manner,
recovering the view matrix M and the pose parameters α
from the keypoints Y :

Φ : R2K × {0, 1}K → RD × R3, (Y, v) 7→ (α, θ).

Here, v is a (row) vector of boolean flags denoting whether
a keypoint is visible in that particular view or not (if the
keypoint is not visible, the flag as well as the spatial coor-
dinates of the point are set to zero). The function outputs
the D pose parameters α and the three parameters θ ∈ R3

of the camera view matrix M(θ) = ΠR(θ), where the ro-
tation is given by R(θ) = expm[θ]×, expm is the matrix
exponential and [·]× is the hat operator.

The benefit of using a learned mapping, besides speed, is
the fact that it can embody prior information on the structure

Input 2D keypoint locations Y :

Predicted canonical shape X = Φ(Y ) trained with Ψ:

Predicted canonical shape X = Φ(Y ) trained without Ψ:

Figure 3: Effects of the canonicalization network Ψ.
Each column shows a 2D pose Y input to the pose predic-
tion network Φ (top) and the predicted 3D canonical shape
X = Φ(Y ) when Φ is trained with (middle) and with-
out (bottom) the canonicalization network Ψ. Observe that
training with Ψ provides significantly more stable canoni-
cal shape predictions X as the input pose rotates around the
camera y-axis.

of the object which is not apparent in the linear model. The
mapping itself is learned by minimizing the re-projection
loss obtained by averaging the loss over visible keypoints:

`1(Y, v; Φ, S) =
1

K

K∑
k=1

vk · ‖Yk −M(θ)(α⊗ I3)S:,k‖ε,

(4)
where (α, θ) = Φ(Y, v) and ‖z‖ε = (

√
1 + (‖z‖/ε)2−1)ε

is the pseudo-huber loss with soft threshold ε1. Given a
dataset (Y, v) ∈ D of views of an object category, the neural
network Φ is trained by minimizing the empirical average of
this loss. This setup is illustrated in the bottom half of fig. 2.

3.4. Consistent factorization via canonicalization

A challenge with NR-SFM is the ambiguity in decom-
posing variations in the 3D shape of an object into view-
point changes (rigid motions) and internal object deforma-
tions [40]. In this section, we propose a novel approach
to directly encourage the reconstruction network Φ to be
consistent in the way reconstructions are performed. This
means that it must not be possible for the network to pro-
duce two different 3D reconstructions that differ only by a
rigid motion, because such a difference should have been
instead explained as a viewpoint change.

Formally, letX0 be the set of all reconstructionsX(α;S)
obtained by the network, where the parameters (α, θ) =

1We set ε = 0.01 in all experiments.



Φ(Y, v) are obtained by considering all possible views
(Y, v) of the object. If the network factorizes viewpoint and
pose consistently, then there cannot be two different recon-
structions X,X ′ ∈ X0 related by a mere viewpoint change
X ′ = RX . This is formalized by the following definition:

Definition 1. The set X0 ⊂ R3×K has the transversal prop-
erty if, for any pair X,X ′ ∈ X0 of structures related by a
rotation X ′ = RX , then X = X ′.

Transversality can also be interpreted as follows: rota-
tions partition the space of structures R3×K into equiva-
lence classes. We would like reconstructions to be unique
within each equivalence class. A set that has a unique or
canonical element for each equivalent class is also called
a transversal. Definition 1 captures this idea for the set of
reconstructions X0.

For the purpose of learning, we propose to enforce
transversality via the following characterizing property
(proofs in the supplementary material):

Lemma 1. The set X0 ⊂ R3×K has the transversal prop-
erty if, and only if, there exists a canonicalization function
Ψ : R3×K → R3×K such that, for all rotations R ∈ SO(3)
and structures X ∈ X0, X = Ψ(RX).

Intuitively, this lemma states that, if X0 has the transver-
sal property, then any rotation of its elements can be un-
done unambiguously. Otherwise stated, we can construct
a canonicalization function with range in the set of recon-
structions X0 if, and only if, this set contains only canonical
elements, i.e. it has the transversal property (definition 1).

For C3DPO, the lemma is used to enforce a consistent
decomposition in viewpoint and pose via the following loss:

`2(X,R; Ψ) =
1

K

K∑
k=1

‖X:,k −Ψ(RX):,k‖ε, (5)

where R ∈ SO(3) is a randomly-sampled rotation, and Ψ
is a regressor canonicalization network trained in parallel
with the factorization network Φ.

Regularizer `2 (eq. (5)) is combined with the re-
projection loss `1 (eq. (4)) as follows (fig. 2): given an in-
put sample Yn, we first pass it through Φ(Yn, v) to generate
viewpoint and pose parameters θn and αn, which enter the
re-projection loss `2. In addition, a random rotation R̂ is ap-
plied to the generated structure Xn = X(αn;S), and R̂Xn

is passed to the auxiliary canonicalization neural network
Ψ. Ψ then undoes R̂ by predicting shape coefficients α̂n
that produce a shape X̂n = X(α̂n;S) which should recon-
struct the unrotated input shape Xn as precisely as possi-
ble. This is enforced by passing X̂n and Xn to the loss
`2. The two networks Φ and Ψ are trained in parallel by
minimizing `1 + `2, which encourages learning consistent
viewpoint-pose factorization. The effect of the loss is illus-
trated in fig. 3.

3.5. In-plane rotation invariance

Rotation equivariance is another property of the factor-
ization network that can be used to constrain learning. Let
Y = ΠRX be a view of the 3D structure X . Rotating the
camera around the optical axis has the effect of applying a
rotation rz ∈ SO(2) to the keypoints. Hence, the two re-
constructions Φ(Y, v) = (α, θ) and Φ(rzY, v) = (α′, θ′)
must yield the same 3D structure α = α′. This is captured
via a modified reprojection loss that exchanges α for α′:

`3(Y, v; Φ, S)=
1

K

K∑
k=1

vk·‖rzYk−M(θ′)(α⊗I3)S:,k‖ε

(6)

This yields the combined loss `2 + `3 (the range of losses
are comparable are combined with equal weight).

4. Experiments
In this section, we compare our method against several

strong baselines. First, the employed benchmarks are de-
scribed followed by quantitative and qualitative evaluations.

4.1. Datasets

We consider three diverse benchmarks containing im-
ages of objects with 2D keypoints annotations. The datasets
differ by keypoint density, object type, deformations, and
intra-class variations.

Synthetic Up3D (S-Up3D) We first validate C3DPO in
a noiseless setting using a large synthetic 2D/3D dataset of
dense human keypoints based on the Unite the People 3D
(Up3D) dataset [24]. For each Up3D image, the SMPL
body shape and pose parameters are provided and are used
to produce a mesh with 6890 vertices. Each of the 8515
meshes is randomly rotated into 30 different views and the
orthographic projection of each vertex is recorded along
with its visibility (computed using a ray tracer). The goal
is then to recover the 3D shapes given the set of 2D key-
point renders. We maintain the same train/test split as in the
Up3D dataset.

Similar to [24], performance is evaluated on the 79
representative vertices of the SMPL model. Although
C3DPO can reconstruct the original set of 6890 SMPL
model keypoints effortlessly, we evaluate on a subset of
points due to a limited scalability of some of the base-
lines [33, 11]. For the same reason, we further randomly
sampled the generated test poses to 15k images. Perfor-
mance is measured by averaging a 3D reconstruction error
metric (see below) over all frames in the test set.

PASCAL3D+ [39] Similar to [16, 35], we evaluate our
method on the the PASCAL3D+ dataset which consists of
PASCAL VOC and ImageNet images for 12 rigid object
categories with a set of sparse keypoints annotated on each
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Figure 4: Qualitative results on PASCAL3D+ comparing our method C3DPO-HRNet (red) with CMR [16] (violet). Each
column contains the input monocular 2D keypoints (top) and lifting of the 2D keypoints into 3D by CMR (middle) and by
our method (bottom) viewed from 2 different angles.

Method MPJPE Stress

EM-SfM [33] 0.107 0.061
GbNrSfM [11] 0.093 0.062
C3DPO-base 0.160 0.105
C3DPO-equiv 0.154 0.102
C3DPO 0.068 0.040

Table 1: Results on the synthetic Up-3D (S-Up3D) com-
paring our method (C3DPO), NRSfM baselines [33, 11] and
two variants of our method (C3DPO-equiv, C3DPO-base)
which ablate effects of individual components of C3DPO.

image (deformations still arise due to intra-class shape vari-
ations). There are up to 10 CAD models available for each
category, from which one is manually selected and aligned
for each image, providing an estimate of the ground truth
3D keypoint locations. To maintain consistency between
the 2D and 3D keypoints, we use the 2D orthographic pro-
jections of the aligned CAD model keypoints as opposed
to the per-image 2D keypoint annotations, and update the
visibility indicators based on the CAD model annotations.

Human3.6M [13] is perhaps the largest dataset of hu-
man poses annotated with 3D ground truth extracted using
MoCap systems. As in [21], two variants of the dataset are
used: the first contains ground-truth 2D keypoints during
both train and test time and in the second, 2D keypoint
locations are obtained by the Stacked Hourglass network
of [34]. We closely follow the evaluation protocol of [21]
and report absolute errors measured over 17 joints without
any procrustes alignment. We maintain the same train and
test split as [21], and report an average over errors attained
for each frame in a given MoCap sequence of an action type.

CUB-200-2011 [38] consists of 11,788 images of 200
bird species. Each image is annotated with 2D locations of
15 semantic keypoints and corresponding visibility indica-
tors. There are no ground truth 3D keypoints for this dataset
so we only perform a qualitative evaluation. We use the 2D
annotations from [16].

Method MPJPE Stress

GbNrSfM [11] 184.6 111.3
EM-SfM [33] 131.0 116.8
C3DPO-base 53.5 46.8
C3DPO-equiv 50.1 44.5
C3DPO 38.0 32.6

CMR [16]† 74.4 53.7
C3DPO + HRNet† 57.5 41.4

Table 2: Average reconstruction error (MPJPE) and
`1 stress over the 12 classes of Pascal3D comparing
our method C3DPO with two ablations of our approach
(C3DPO-equiv, C3DPO-base) and the methods from [11,
16, 33]. Approaches marked with † predict 3D shape with-
out knowledge of the ground-truth 2D keypoints at test time.

4.2. Evaluation metrics

As common practice, the absolute mean per joint posi-
tion error is reported: MPJPE(X∗, X) =

∑K
k=1 ‖Xk −

X∗k‖/K,whereXk ∈ R3 is the predicted 3D location of the
k-th keypoint and X∗k is its corresponding ground-truth 3D
location (both in the 3D frame of the camera).

In order to evaluate MPJPE properly, two types of pro-
jection ambiguities have to be handled. To deal with the
absolute depth ambiguity, for Human3.6M we follow [21]
and normalize each pose by applying a translation that puts
the skeleton root to the origin of the coordinate system. For
PASCAL3D+ and S-Up3D, the mean depth of predicted and
ground truth point clouds is zero centered before evaluation.
The second, depth flip ambiguity, is resolved as in [33] by
evaluating MPJPE twice for the original and depth-flipped
point cloud, retaining the better of the two.

We also report the `1 Stress(X,X∗) =
∑
i<j | ‖Xi −

Xj‖−‖X̂∗i −X∗j ‖ |1/(K(K−1)). This metric is invariant to
camera pose and the absolute depth and z-flip ambiguities.
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Figure 5: 3D poses on Human3.6M predicted from monocular keypoints. Each column contains the input 2D keypoints (top)
and a comparison between PoseGAN [21] (blue, middle), and our method C3DPO (bottom, red) from two 3D viewpoints.

4.3. Baselines

C3DPO is compared to several strong baselines. EM-
SfM [33] and GbNrSfM [11] are NR-SFM methods with
publicly available code. Because, when using [11, 33], it
is difficult to make predictions on previously unseen data,
we run the two methods directly on the test set and re-
port results after convergence. This gives the two base-
lines an advantage over our method. On Human3.6M, out
of several available methods, we compare with [21] (Pose-
GAN) which is a current state-of-the-art approach for unsu-
pervised 3D pose estimation that does not require any 3D,
multiview or video annotations. Unlike other weakly super-
vised methods [10, 20], Pose-GAN does not assume knowl-
edge of the camera intrinsic parameters, hence it is the most
comparable to our approach. To ensure fair comparison, we
use their public evaluation code together with the provided
keypoint detections of the Stacked Hourglass model. Pose-
GAN was not tested on other datasets as the method cannot
handle inputs with occluded keypoints. On PASCAL3D+,
our method is compared with Category-Specific Mesh Re-
construction (CMR) from [16]. CMR provides results for
2 categories out of the 12 of PASCAL3D+, but we trained
models for all 12 categories using the public code. Note that
CMR additionally uses segmentation masks during training,
hence has a higher level of supervision than our method.

The effects of individual components of our method are
evaluated by ablation and recording the change in perfor-
mance. This generates three variants of our method: (1)
C3DPO-base only optimizes the re-projection loss `1(Φ)
from eq. (4), (2) C3DPO-equiv replaces `1(Φ) with the
optimization of the z-invariant loss `3(Φ) (section 3.5), (3)
C3DPO extends C3DPO-equiv with the secondary canoni-
calization network Ψ (section 3.4).

Method Ground truth pose Predicted pose

MPJPE Stress MPJPE Stress

Pose-GAN [21] 130.9 51.8 173.2 -
C3DPO-base 135.2 56.9 201.6 101.4
C3DPO-equiv 128.2 53.0 190.4 93.9
C3DPO 101.8 43.5 153.0 86.0

Table 3: Results on Human3.6M reporting average per
joint position error (MPJPE) and `1 stress over the set of
test actions (follows the evaluation protocol from [21]). We
compare performance, when ground truth pose keypoints
are available during test-time (2nd and 3rd column) and
when the keypoints are predicted using the Stacked Hour-
glass network [34] (4th and 5th column).

4.4. Technical details

Networks Ψ and Φ share the same core architecture
and consist of 6 fully connected residual layers each with
1024/256/1024 neurons (please refer to the supplementary
material for architecture details). Residual skip connections
were found important since they prevented networks from
converging to a rigid average shape.

Keypoints Yn are first zero-centered before being passed
to Ψ. We further scale each set of centered 2D locations by
the same scalar factor so their extent is roughly [−1, 1] on
average in the axis of the highest variance. The network is
trained with a batched SGD optimizer with momentum with
an initial learning rate of 0.001, decaying 10 fold whenever
the training objective plateaued. The batch size was set to
256. The training losses `3(Φ) and `2(Ψ) were weighted
equally.

For Human3.6M, we did not model the translation T of
the camera as the centroid of the input 2D keypoints coin-
cides with the centroid of the 3D shape (due to the lack of
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Figure 6: Qualitative results on CUB-200-2011 comparing our method C3DPO-HRNet (red) with CMR [16] (violet).
Each column contains the input monocular 2D keypoints (top), lifting of the 2D keypoints into 3D by CMR (middle) and by
our method (bottom) from 2 different 3D viewpoints (the same view and a view offset by 90◦ along camera y-axis).

occluded keypoints). For the other datasets, which contain
occlusions, we estimate the camera translation as the dif-
ference vector between the mean of the input visible points
and the re-projected visible 3D shape keypoints.

In order to adapt our method for the multiclass set-
ting of PASCAL3D+, which has different sets of keypoints
for each of the 12 object categories, we adjust the key-
point annotations as follows. For each object category
C ∈ {1, . . . , 12} with a set of KC keypoints Y Cn ∈ R2×KC

in an image n, we form a multiclass keypoint annotation
Yn =

[
0, . . . , Y Cn , . . . ,0

]
by assigning Y Cn to the C-th block

of Yn and padding with zeros. The visibility indicators vn
are expanded in a similar fashion. This avoids reconstruct-
ing each class separately, allowing our method to train only
once for all classes. This also tests the ability of the model
to capture non-rigid deformations not only within, but also
across object categories. While this expanded version of
keypoint annotations was also tested for GbNrSfM, for EM-
SfM, we could not obtain satisfactory performance and re-
constructed each class independently. Similarly for CMR,
12 class-specific models were trained separately.

4.5. Results

Synthetic Up3D. Table 1 reports the results on the S-
Up3D dataset. Our method outperforms both EM-SfM and
GbNrSfM, which validates our approach as a potential re-
placement for existing NR-SFM methods based on matrix
factorization. The table also shows that C3DPO performs
substantially better than C3DPO-base, highlighting the im-
portance of the canonicalization network Ψ.

PASCAL3D+. For PASCAL3D+ we consider two types
of methods. Methods of the first type include GbNrSfM
and EM-SfM and take as input 2D ground truth keypoint
annotations on the PASCAL3D+ test set, reconstructing it
directly. The second type is CMR which uses ground truth
annotations for training, but does not use keypoint annota-
tions for evaluation on the test data. In order to make our
method comparable with CMR, we used as a detector the

High Resolution Residual network (HRNet [19]), training
it on the 2D keypoint annotations from the PASCAL3D+
training set. The trained HRNet is applied to the test set
to extract the 2D keypoints Y and these are lifted to 3D by
applying C3DPO (abbreviated as C3DPO+HRNet).

The results are reported in table 2. C3DPO performs
better than EM-SfM and GbNrSfM when ground truth key-
points are available during testing. Our method also outper-
forms CMR by 16%. On several classes (motorbike, train),
we obtain significantly better results due to the reliance of
CMR on an initial off-the-shelf rigid SFM algorithm that
fails to obtain satisfactory reconstructions. This result is es-
pecially interesting since, unlike CMR, C3DPO is trained
for all classes at once without ground truth segmentation
masks. Figure 4 contains qualitative evaluation.

Human3.6M. Results on the Human3.6M dataset are
summarized in table 3. C3DPO outperforms Pose-GAN
for both ground truth and predicted keypoint annotations.
Again, C3DPO improves over baseline C3DPO-base by a
significant margin. Example reconstructions are in Figure 5.

CUB-200-2011. Similar to PASCAL3D+, in order to
make our method comparable with CMR, HRNet is trained
on keypoints from the CUB-200-2011 train set and used
to predict keypoints on unseen test images which are then
input to C3DPO. Figure 6 compares qualitatively our re-
constructions to CMR. Our method is capable of modelling
more flexible poses than CMR. We hypothesize this is be-
cause of the reliance of CMR on an estimate of the camera
matrices obtained using rigid SFM which limits the flexi-
bility of the learned deformations. On the other hand, CMR
does not use a keypoint detector.

5. Conclusions
We have proposed a new approach to learn a model of

a 3D object category from unconstrained monocular views
with 2D keypoints annotations. Compared to traditional so-
lutions that cast this as NR-SFM and solve it via matrix



factorization, our solution is based on learning a deep net-
work that performs monocular 3D reconstruction and fac-
torizes internal object deformations and viewpoint changes.
While this factorization is an ambiguous task, we have
shown a novel approach that constrains the solution recov-
ered by the learning algorithm to be as consistent as pos-
sible by means of an auxiliary canonicalization network.
We have shown that this leads to considerably better per-
formance, enough to outperform strong baselines on bench-
marks that contain large non-rigid deformations within a
category (Human3.6M, Up3D) and across categories (PAS-
CAL3D+).
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C3PO: Canonical 3D Pose Networks for Non-Rigid Structure From Motion

Supplementary material

The first part of the supplementary material contains dis-
cussions regarding the role of the camera translation in the
formulation of SFM/NR-SFM (appendix A.1), number of
degrees of freedom (appendix A.2) and a proof of lemma 1.
Additional information about the architecture of the pro-
posed deep networks is in appendix B. Appendix C provides
additional analysis of the robustness of C3DPO to the input
noise. Appendix D presents additional qualitative results
and appendix E discusses failure modes of our method.

A. Theoretical analysis
This section contains additional information regarding

various theoretical aspects of the NR-SFM task.

A.1. Centering

This section summarizes well known results on data cen-
tering in orthographic SFM and NR-SFM.

Lemma 2. Equations ynk = ΠRnXk + ΠTn hold true
for all n = 1, . . . , N and k = 1, . . . ,K if, and only if,
equations ȳnk = ΠRnX̄k hold true, where

ȳnk = ynk −
1

K

K∑
k=1

ynk, X̄k = Xk −
1

K

K∑
k=1

Xk.

Proof. Average and remove the LHS and RHS of each
equation from both sides.

Lemma 3. Equation ynk = Π(Rn
∑D
d=1 αndSdk + Tn)

holds true for all n = 1, . . . , N and k = 1, . . . ,K if, and
only if, equation ȳnk = ΠRn

(∑D
d=1 αndS̄dk

)
holds true,

where

ȳnk = ynk −
1

K

K∑
k=1

ynk, S̄dk = Sdk −
1

K

K∑
k=1

Sdk.

Proof. Average and remove the LHS and RHS of each
equation from both sides.

A.2. Degrees of freedom and ambiguities

Seen as matrix factorization problems, SFM and NR-
SFM have intrinsic ambiguities; namely, no matter how
many points and views are observed, there is always a
space of equivalent solutions that satisfy all the observa-
tions. Next, we discuss what are these ambiguities and un-
der which conditions they are minimized.

A.2.1 Structure from motion

The SFM eq. (1) contains 2NK constraints and 6N + 3K
unknowns. However, there is an unsolvable ambiguity:
MX = (MA−1)(AX) means that, if (M,X) is a solu-
tion, so (MA−1, AX) is another, for any invertible ma-
trix A ∈ R3×3. If X is full rank and there are at least
N ≥ 2 views, we can show that this is the only ambi-
guity, which has 9 degrees of freedom (DoF). Thus find-
ing a unique solution up to these residual 9 DoF requires
2NK ≥ 6N + 3K − 9. For example, with N = 2 views,
we require K ≥ 3 keypoints. Furthermore, the 3D point
configuration must not be degenerate, in the sense that X
must be full rank.

The ambiguity can be further reduced by considering the
fact that the view matrices M are not arbitrary; they are in-
stead the first two rows of rotation matrices. We can exploit
this fact by setting M1 = I2×3 (which also standardize the
rotation of the first camera), fixing 6 of the 9 DoF.

A.2.2 Non-rigid structure from motion

The NR-SFM equation contains 2NK constraints and 6N+
ND+3DK unknowns. The intrinsic ambiguity has at least
9 DoF as in the SFM case. Hence, for a unique solution (up
to the intrinsic ambiguity) we must have 2NK ≥ 6N +
ND+3DK−9. Compared to the SFM case, the number of
unknowns grows with the number N of views as (6 +D)N
instead of just 6N , where D is the dimension of the shape
basis. Since the number of constraints grows as (2K)N , we
must have K ≥ 3 +D/2 keypoints.

Note that once the shape basis S is learned, it is pos-
sible to perform 3D reconstruction from a single view by
solving (3) for N = 1; in this case there are 2K equations
and 6 + D unknowns, which is once more solvable when
K ≥ 3 +D/2.

A.3. Proof of lemma 1

Lemma 4. The set X0 ⊂ R3×K has the transversal prop-
erty if, and only if, there exists a canonicalization function
Ψ : R3×K → R3×K such that, for all rotations R ∈ SO(3)
and structures X ∈ X0, X = Ψ(RX).

Proof. Assume first that X0 has the transversal property.
Then the function Ψ is obtained by sending each RX for
each X ∈ X0 back to X . This definition is well posed: if
RX = R̄X̄ where both X, X̄ ∈ X0, then X̄ = (R̄)−1RX
and, due to the transversal property, X = X̄ .



Figure 7: Qualitative results on S-Up3D showing input 2D keypoint annotations (top row) and monocular 3D reconstruc-
tions of all 6890 vertices of the SMPL model as predicted by C3DPO from two different viewpoints (bottom row).
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Figure 8: The architecture of Ψ and Φ. Both networks
share the same trunk (6x fully connected residual layers)
and differ in the type of their inputs and outputs.

Assume now that the function Ψ is given and letX,X ′ ∈
X0 such thatX ′ = RX and so Φ(X ′) = Φ(RX). However,
by definition, Φ(RX) = X and Φ(X ′) = Φ(IX ′) = X ′,
so that X = X ′.

B. Architecture of Ψ and Φ

Figure 8 contains a schema of the architecture of Ψ and
Φ (both share the same core architecture). It consists of
5 fully connected residual blocks with a kernel size of 1.
Empirically, we have observed that using residual blocks,
instead of the simpler variant with fully connected layers
directly followed by batch normalization and no skip con-
nections, prevents the network from predicting flattened
shapes.

C. Analysis of robustness
In order to test the robustness of C3DPO to the noise

present in the input 2D keypoints, we devised the following
experiment.

We generated several noisy versions of the Synthetic
Up3D dataset by adding 2D Gaussian noise (with variance
σ) to the 2D input and randomly occluded each 2D input
point with probability pOCC . Experiments were ran for dif-
ferent number of input of keypoints (79, 100, 500, 1000)
and the evaluation was always conducted on the representa-
tive 79 vertices (section 4.1) of S-Up3D-test.

The results of the experiment are depicted in fig. 10. We
have observed improved robustness to noise with higher
numbers of used keypoints. At the same time, the perfor-
mance without noise (σ = 0, pOCC = 0) is slightly worse
for the setup higher number of keypoints (≥ 500 keypoints).
We hypothesize that, when more keypoints are used, the
performance deteriorates because the optimizer focuses less
on minimizing the reprojection losses of the 79 keypoints
that are used for the evaluation.

D. Additional qualitative results
In this section we present additional qualitative re-

sults. Figure 7 contains monocular reconstructions of
C3DPO trained on the full set of 6890 SMPL vertices of the
S-Up3D dataset. Note that we were unable to run [11, 32]
on this dataset due to scalability issues of the two algo-
rithms.

E. C3DPO failure modes

The main sources of failures of our method are: (1)
Failures of the 2D keypoint detector [19]; (2) Reconstruct-
ing “outlier” test 2D poses not seen in training (mainly on
Human3.6m); (3) Reconstructing strongly ambiguous 2D
poses (in a frontal image of a sitting human, the knee an-
gle cannot be recovered uniquely). The failure mode (1) is
depicted in fig. 9.



Figure 9: A qualitative example of 2D keypoints lifted by our
method. Here, the reconstruction fails due to a failure of the
HRNet keypoint detector.
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Figure 10: MPJPE on Up3D of C3DPO depending on various
levels of Gaussian noise added to 2D inputs (σ-vertical axis)
and the probability of occluding an input 2D point (pOCC-
horizontal axis) for different numbers of training keypoints
(left to right, top to bottom: 79, 100, 500, 1000).


