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Abstract

Traditional approaches for learning 3D object cate-

gories use either synthetic data or manual supervision. In

this paper, we propose a method which does not require

manual annotations and is instead cued by observing ob-

jects from a moving vantage point. Our system builds on

two innovations: a Siamese viewpoint factorization network

that robustly aligns different videos together without explic-

itly comparing 3D shapes; and a 3D shape completion net-

work that can extract the full shape of an object from partial

observations. We also demonstrate the benefits of configur-

ing networks to perform probabilistic predictions as well as

of geometry-aware data augmentation schemes. We obtain

state-of-the-art results on publicly-available benchmarks.

1. Introduction

Despite their tremendous effectiveness in tasks such as

object category detection, most deep neural networks do not

understand the 3D nature of object categories. Reasoning

about objects in 3D is necessary in many applications, for

physical reasoning, or to understand the geometric relation-

ships between different objects or scene elements.

The typical approach to learn 3D objects is to make use

of large collections of high quality CAD models such as [5]

or [42], which can be used to fully supervise models to rec-

ognize the objects’ viewpoint and 3D shape. Alternatively,

one can start from standard image datasets such as PAS-

CAL VOC [8], augmented with other types of supervision,

such as object segmentations and keypoint annotations [4].

Whether synthetically generated or manually collected, an-

notations have so far been required in order to overcome

the significant challenges of learning 3D object categories,

where both viewpoint and geometry are variable.

In this paper, we develop an alternative approach that

can learn 3D object categories in an unsupervised manner

(fig. 1), replacing synthetic or manual supervision with mo-

tion. Humans learn about the visual word by experiencing it

continuously, through a variable viewpoint, which provides

Figure 1. We propose a convolutional neural network architecture

to learn the 3D geometry of object categories from videos only,

without manual supervision. Once learned, the network can pre-

dict i) viewpoint, ii) depth, and iii) a point cloud, all from a single

image of a new object instance.

very strong cues on its 3D structure. Our goal is to build

on such cues in order to learn the 3D geometry of object

categories, using videos rather than images of objects. We

are motivated by the fact that videos are almost as cheap as

images to capture, and do not require annotations.

We build on mature structure-from-motion (SFM) tech-

nology to extract 3D information from individual video se-

quences. However, these cues are specific to each object

instance as contained in different videos. The challenge is

to integrate this information in a global 3D model of the ob-

ject category, as well as to work with noisy and incomplete

reconstructions from SFM.

We propose a new deep architecture composed of three

modules (fig. 2). The first module estimates the abso-

lute viewpoint of objects in all video sequences (sec. 3.2).

This aligns different object instances to a common reference

frame where geometric relationships can be modeled more
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Figure 2. Overview of our architecture. As a preprocessing, structure from motion (SFM) extracts egomotion and a depth map for every

frame. For training, our architecture takes pairs of frames ft, ft′ and produces a viewpoint estimate, a depth estimate, and a 3D geometry

estimate. At test time, viewpoint, depth, and 3D geometry are predicted from single images.

easily. The second estimates the 3D shape of an object from

a given viewpoint, producing a depth map (sec. 3.3). The

third completes the depth map to a full 3D reconstruction in

the globally-aligned reference frame (sec. 3.4). Combined

and trained end-to-end without supervision, from videos

alone, these components constitute VpDR-Net, a network

for viewpoint, depth and reconstruction, capable of extract-

ing viewpoint and shape of a new object instance from a

single image.

One of our main contributions is thus to demonstrate the

utility of using motion cues in learning 3D categories. We

also introduce two significant technical innovations in the

viewpoint and shape estimation modules as well as design

guidelines and training strategies for 3D estimation tasks.

The first innovation (sec. 3.2) is a new approach to

align video sequences of different 3D objects based on a

Siamese viewpoint factorization network. While existing

methods [37, 35] align shapes by looking at 3D features, we

propose to train VpDR-Net to directly estimate the absolute

viewpoint of an object. We train our network to reconstruct

relative camera motions and we show that this implicitly

aligns different objects instances together. By avoiding ex-

plicit shape comparisons in 3D space, this method is simpler

and more robust than alternatives.

The second innovation (sec. 3.4) is a new network ar-

chitecture that can generate a complete point cloud for the

object from a partial reconstruction obtained from monocu-

lar depth estimation. This is based on a shape representation

that predicts the support of a point probability distribution

in 3D space, akin to a flexible voxelization, and a corre-

sponding space occupancy map.

As a general design guideline, we demonstrate through-

out the paper the utility of allowing deep networks to ex-

press uncertainty in their estimate by predicting probabil-

ity distributions over outputs (sec. 3), yielding more ro-

bust training and useful cues (such as separating foreground

and background in a depth map). We also demonstrate the

significant power of geometry-aware data augmentation,

where a deep network is used to predict the geometry of an

image and the latter is used to generate new realistic views

to train other components of the system (sec. 4). Each com-

ponent and design choice is thoroughly evaluated in sec. 5,

with significant improvements over the state-of-the-art.

2. Related work

Viewpoint estimation. The vast majority of methods for

learning the viewpoint of object categories use manual su-

pervision [32, 25, 11, 26, 43, 23, 39] or synthetic [36] data.

In [40], a deep architecture predicts a relative camera pose

and depth for a pair of images. Only a few works have

used videos [37, 35]. [35] solves the shape alignment prob-

lem using a global search strategy based on the pairwise

alignment of point clouds, a step we avoid by means of our

Siamese viewpoint factorization network.

3D shape prediction. A traditional approach to 3D recon-

struction is to use handcrafted 3D models [29, 21], and more

recently 3D CAD models [5, 43]. Often the idea is to search

for the 3D model in a CAD library that best fits the im-

age [19, 1, 13, 2]. Alternatively, CAD models can be used

to train a network to directly predict the 3D shape of an

object [10, 41, 38, 7]. Morphable models have sometimes

been used [45, 16], particularly for modeling faces [3, 20].

All these methods require 3D models at train time.

Data-driven approaches for geometry. Structure from

motion (SFM) generally assumes fixed geometry between

views and is difficult to apply directly to object categories

due to intra-class variations. Starting from datasets of un-

ordered images, methods such as [44] and [27] use SFM

and manual annotations, such as keypoints in [4, 16], to es-

timate a rough 3D geometry of objects. Here, we leverage

motion cues and do not need extra annotations.



3. Method

We propose a single Convolutional Neural Network

(CNN), VpDR-Net, that learns a 3D object category by ob-

serving it from a variable viewpoint in videos and no super-

vision (fig. 2). Videos do not solve the problem of modeling

intra-class shape variations, but they provide powerful yet

noisy cues about the 3D shape of individual objects.

VpDR-Net takes as an input a set of K video sequences

S1, ..., SK of an object category (such as cars or chairs),

where a video Si = (f i
1
, ..., f i

Ni) contains N i RGB or

RGBD frames f i
t ∈ R

H×W×C (where C = 3 for RGB

and C = 4 for RGBD data) and learns a model of the

3D category. This model has three components: i) a pre-

dictor Φvp(f
t
i ) of the absolute viewpoint of the object (im-

plicitly aligning the different object instances to a common

reference frame; sec. 3.2), ii) a monocular depth predictor

Φdepth(f
t
i ) (sec. 3.3) and iii) and a shape predictor Φpcl(f

t
i )

that extends the depth map to a point cloud capturing the

complete shape of the object (sec. 3.4). Learning starts by

preprocessing videos to extract instance-specific egomotion

and shape information (sec. 3.1).

3.1. Sequencespecific structure and pose

Video sequences are pre-processed to extract from each

frame f i
t a tuple (Ki

t , g
i
t, D

i
t) consisting of: (i) the camera

calibration parameters Ki
t , (ii) its pose git ∈ SE(3), and

(iii) a depth map Di
t ∈ R

H×W associating a depth value

to each pixel of f i
t . The camera pose git = (Ri

t, T
i
t ) con-

sists of a rotation matrix Ri
t ∈ SO(3) and a translation

vector T i
t ∈ R

3.1 We extract this information using off-the-

shelf methods: the structure-from-motion (SFM) algorithm

COLMAP for RGB sequences [33, 34], and an open-source

implementation [31] of KinectFusion (KF) [24] for RGBD

sequences. The information extracted from RGB or RGBD

data is qualitatively similar, except that the scale of SFM

reconstructions is arbitrary.

3.2. Intrasequence alignment

Methods such as SFM or KF can reliably estimate cam-

era pose and depth information for single objects and indi-

vidual video sequences, but are not applicable to different

instances and sequences. In fact, their underlying assump-

tion is that geometry is fixed, which is true for single (rigid)

objects, but false when the geometry and appearance differ

due to intra-class variations.

Learning 3D object categories requires to relate their

variable 3D shapes by identifying and putting in correspon-

dence analogous geometric features, such as the object front

and rear. For rigid objects, such correspondences can be ex-

pressed by rigid transformations that align occurrences of

1We use the convention that git transforms world-relative coordinates

pworld to camera-relative coordinates pcamera = gitpworld.

analogous geometric features.

The most common approach for aligning 3D shapes, also

adopted by [35] for video sequences, is to extract and match

3D feature descriptors. Once objects in images or videos are

aligned, the data can be used to supervise other tasks, such

as learning a monocular predictor of the absolute viewpoint

of an object [35].

One of our main contributions, described below, is to re-

verse this process by learning a viewpoint predictor with-

out explicitly matching 3D shapes. Empirically (sec. 5), we

show that, by skipping the intermediate 3D analysis, our

method is often more effective and robust than alternatives.

Siamese network for viewpoint factorization. Geomet-

ric analogies between 3D shapes can often be detected in

image space directly, based on visual similarity. Thus, we

propose to train a CNN Φvp that maps a single frame f i
t to

its absolute viewpoint ĝit = Φvp(f
i
t ) in the globally-aligned

reference frame. We wish to learn this CNN from the view-

points estimated by the algorithms of sec. 3.1 for each video

sequence. However, these estimated viewpoints are not ab-

solute, but valid only within each sequence; formally, there

are unknown sequence-specific motions hi = (Ri, T i) ∈
SE(3) that map the sequence-specific camera poses git to

global poses ĝit = gith
i.2

To address this issue, we propose to supervise the net-

work using relative pose changes within each sequence,

which are invariant to the alignment transformation hi. For-

mally, the transformation hi is eliminated by computing the

relative pose change of the camera from frame t to frame t′:

ĝit′(ĝ
i
t)

−1 = git′h
i(hi)−1(git)

−1 = git′(g
i
t)

−1. (1)

Expanding the expression with ĝit = (R̂i
t, T̂

i
t ), we find equa-

tions expressing the relative rotation and translation

R̂i
t′(R̂

i
t)

⊤ = Ri
t′(R

i
t)

⊤, (2)

T̂ i
t′ − R̂i

t′(R̂
i
t)

⊤T̂ i
t = T i

t′ −Ri
t′(R

i
t)

⊤T i
t . (3)

Eqs. (2) and (3) are used to constrain the training of a

Siamese architecture, which, given two frames t and t′,
evaluates the CNN twice to obtain estimates (R̂i

t, T̂
i
t ) =

Φvp(f
i
t ) and (R̂i

t′ , T̂
i
t′) = Φvp(f

i
t′). The estimated poses

are then compared to the ground truth ones, (Ri
t, T

i
t ) and

(Ri
t′ , T

i
t′), in a relative manner by using losses that enforce

the estimated poses to satisfy eqs. (2) and (3):

ℓR(R̂
i
t, T̂

i
t , R̂

i
t′ , T̂

i
t′)

·
= ‖ ln R̂i

tt′(R
i
tt′)

⊤‖F (4)

ℓT (R̂
i
t, T̂

i
t , R̂

i
t′ , T̂

i
t′)

·
= ‖T̂ i

tt′ − T i
tt′‖2 (5)

where ln is the principal matrix logarithm and

Ri
t′t

·
= Ri

t′(R
i
t)

⊤, R̂i
t′t

·
= R̂i

t′(R̂
i
t)

⊤,

T i
t′t

·
= T i

t′ −Ri
t′tT

i
t , T̂ i

t′t

·
= T̂ i

t′ − R̂i
t′tT̂

i
t .

2hi composes to the right: it transforms the world reference frame and

then moves it to the camera reference frame.



While this CNN is only required to correctly predict relative

viewpoint changes within each sequence, since the same

CNN is used for all videos, the most plausible/regular so-

lution for the network is to assign similar viewpoint predic-

tions (R̂i
t, T̂

i
t ) to images viewed from the same viewpoint,

leading to a globally consistent alignment of the input se-

quences. Furthermore, in a large family of 3D objects, dif-

ferent ones (e.g. SUVs and sedans) tend to be mediated by

intermediate cases. This is shown empirically in sec. 5.

Scale ambiguity in SFM. For methods such as SFM, there

is an additional ambiguity: reconstructions are known only

up to sequence-specific scaling factors λi > 0, so that the

camera pose is parametrized as git(λ
i) = (Ri

t, λ
iT i

t ). This

ambiguity leaves eq. (2) unchanged, but eq. (3) becomes:

T̂ i
t′ − R̂i

t′tT̂
i
t = λi(T i

t′ −Ri
t′tT

i
t ) ⇒ T̂ i

t′t = λiT i
t′t

During training, the ambiguity can be removed from loss (5)

by dividing vectors T i
t′t and T̂ i

t′t by their Euclidean norm.

Note that for KF sequences λi = 1. As the viewpoints are

learned, an estimate of λ̂i is computed using a moving av-

erage over training iterations for the other network modules

to use (see supplementary material for details).

Probabilistic predictions. Due to intrinsic ambiguities in

the images or to errors in the SFM supervision (caused

for example by reflective or textureless surfaces), Φvp is

occasionally unable to predict the ground truth viewpoint

accurately. We found beneficial to allow the network to

explicitly learn these cases and express uncertainty as an

additional input-dependent prediction. For the translation

component, we modify the network to predict the absolute

pose T̂ i
t as well as its confidence score σT̂ i

t
(predicted as

the output of a soft ReLU units to ensure positivity). We

then model the relative translation as a Gaussian distribution

with standard deviation σT = σT̂ i
t′
+ σT̂ i

t
and our model is

now learned by minimizing the negative log-likelihood LT

which replaces the loss ℓT :

LT = − ln
1

(2πσ2

T )
3

2

exp

(

−1

2

ℓ2T
σ2

T

)

. (6)

The rotation component is more complex due to the non-

Euclidean geometry of SO(3), but it was found sufficient

to assume that the error term (4) has Laplace distribution

and optimize LR = − ln 1

CR
exp

(

−
√
2ℓR
σR

)

, σR = σR̂i
t′
+

σR̂i
t
, where CR is a normalization term ensuring that the

probability distribution integrates to one. During training,

by optimizing the losses LR and LT instead of ℓR and ℓT ,

the network can discount gross errors by dividing the losses

by a large predicted variance.

Architecture. The architecture of Φvp is a variant of

ResNet-50 [15] with some modifications to improve its per-

formance as viewpoint predictor. The lower layers of Φvp

Figure 3. Data augmentation. Training samples generated lever-

aging monocular depth estimation (ours, top) and using depth from

KF (baseline, bottom). Missing pixels due to missing depth in red.

are used to extract a multiscale intermediate representation

(denoted HC for hypercolumn [14] in fig. 2). The upper

layers consist of 2 × 2 downsampling residual blocks that

predict the viewpoint (see supp. material for details).

3.3. Depth prediction

The depth predictor module Φdepth of VpDR-Net takes

individual frames f i
t and outputs a corresponding depth map

D̂t = Φdepth(f
i
t ), performing monocular depth estimation.

Estimating depth from a single image is inherently am-

biguous and requires comparing the image to internal priors

of the object shape. Similar to pose, we allow the network

to explicitly learn and express uncertainty about depth es-

timates by predicting a posterior distribution over possible

pixel depths. For robustness to outliers from COLMAP and

KF, we assume a Laplace distribution with negative log-

likelihood loss

LD =

WH
∑

j=1

− ln

√
2

2σ̂dj

exp

(

−
√
2 |dj − λ̂i

−1

d̂j |
σ̂dj

)

, (7)

where dj is the noisy ground truth depth output by SFM

or KF for a given pixel j, and d̂j and σ̂dj
are respectively

the corresponding predicted depth mean and standard devi-

ation. The relative scale λ̂i is 1 for KF and is estimated as

explained in sec. 3.2 for SFM.

3.4. Pointcloud completion

Given any image f of an object instance, its aligned 3D

shape can be reconstructed by estimating and aligning its

depth map using the output of the viewpoint and depth pre-

dictors of sec. 3.2 and 3.3. However, since a depth map

cannot represent the occluded portions of the object, such

a reconstruction can only be partial. In this section, we de-

scribe the third and last component of VpDR-Net, whose

goal is to generate a full reconstruction of the object, be-

yond what is visible in the given view.

Partial point cloud. The first step is to convert the pre-

dicted depth map D̂f = Φdepth(f) into a partial point cloud

P̂f
·
= {p̂j : j = 1, . . . , HW}, p̂j ·

= K−1
[

uj vj d̂i
]⊤

,
where (uj , vj) are the coordinates of a pixel j in the depth

map D̂f and K is the camera calibration matrix. Empir-

ically, we have found that the reconstruction problem is



Figure 4. Viewpoint prediction. Most confident viewpoint predictions (sorted by predicted confidence from left to right) where the

viewpoint predicted by VpDR-Net is used to align the Pascal3D ground truth CAD models with each image.

much easier if the data is aligned in the global reference

frame established by VpDR-Net. Thus, we transform P̂f

into a globally-aligned point cloud as P̂G
f = ĝ−1P̂f , where

ĝ = Φvp(f) is the camera pose estimated by the viewpoint-

prediction network.

Point cloud completion network. Next, our goal is to learn

the point cloud completion part of our network Φpcl that

takes the aligned but incomplete point could P̂G
f and pro-

duces a complete object reconstruction Ĉ. We do so by pre-

dicting a 3D occupancy probability field. However, rather

than using a volumetric method that may require a discrete

and fixed voxelization of space, we propose a simple and

efficient alternative. First, the network Φpcl predicts a set

of M 3D points Ŝ = (ŝ1, . . . , ŝM ) ∈ R
3×M that, during

training, closely fit the ground truth 3D point cloud C. This

step minimizes the fitting error:

ℓpcl(Ŝ) =
1

|C|
∑

c∈C

min
m=1,...,M

‖c− ŝm‖
2
. (8)

The 3D point cloud Ŝ provides a good coverage of the

ground truth object shape. However, this point cloud is con-

servative and distributed in the vicinity of the ground truth

object. Thus, while this is not a precise representation of

the object shape, it works well as a support of a probability

distribution of space occupancy. In order to estimate the oc-

cupancy probability values, the network Φpcl(P̂
G
f ) predicts

additional scalar outputs

δm = |{c ∈ C : ∀m′ : ‖ŝm − c‖2 ≤ ‖ŝm′ − c‖2}|/|C|

proportional to the number of ground truth surface points

c ∈ C for which the support point ŝm is the nearest neigh-

bor. The network is trained to compute a prediction δ̂m of

the occupancy masses δm by minimizing the squared error

loss ℓδ(δ̂, δ) =
∑M

m=1
(δ̂m − δm)2.

Given the network prediction (Ŝ, δ̂) = Φpcl(P̂
G
f ), the

completed point cloud is then defined as the subset of points

Ĉ that have sufficiently high occupancy, defined as: Ĉτ =
{ŝm ∈ Ŝ : δm ≥ τ} where τ is a confidence parameter. The

set Ĉτ can be further refined by using e.g. a 3D Laplacian

filter to smooth out noise.

Architecture. The point cloud completion network Φpcl is

modeled after PointNet [28], originally proposed to seman-

tically segment a point clouds. Here we adapt it to perform

a completely different task, namely 3D shape reconstruc-

tion. This is made possible by our model where shape is

represented as a cloud of 3D support points Ŝ and their oc-

cupancy masses δ̂. Differently from Φvp and Φdepth, Φpcl

is not convolutional but uses a sequence of fully connected

layers to process the 3D points in P̂G
f , after appending an

appearance descriptor to each of them. A key step is to add

an intermediate orderless pooling operator to remove the

dependency on the order and number of input points (see

the supplementary material for details). The architecture is

configured to predict M = 104 points Ŝ.

Leave out. During training the incomplete point cloud P̂G
f

is downsampled by randomly selecting between M = 103

and 104 points based on their depth prediction confidence

as estimated by Φdepth. Similar to dropout, dropping points

allows the network to overfit less, to become less sensitive

to the size of the input point cloud, and to implicitly discard

background points (as these are assigned low confidence by

depth prediction). For the latter reason, leave out is main-

tained at test time too with M = 104.

4. Geometry-aware data augmentation

As viewpoint prediction with deep networks benefits sig-

nificantly from large training sets [36], we increase the ef-

fective size of the training videos by data augmentation.

This is trivial for tasks such as classification, where one can

translate or scale an image without changing its identity.

The same is true for viewpoint recognition if the task is to

only estimate the viewpoint orientation as in [36, 39], as

images can be scaled and translated without changing the

equivalent viewpoint orientation. However, this assumption

is not satisfied if, as in our case, the goal is to estimate all 6

DoF of the camera pose.

Inspired by the approach of [12], we propose to solve



object class test set level of supervision method ↓ eR ↓ eC ↓ erelR ↓ erelT ↑ APeR
↑ APeC

car Pascal3D

unsupervised VPNet + aligned FrC [35] 49.62 32.29 85.45 0.84 0.15 0.01

unsupervised VpDR-Net + FrC (ours) 29.57 7.29 62.30 0.65 0.41 0.91

fully supervised VPNet + Pascal3D 12.49 1.27 20.34 0.24 0.77 0.97

chair

Pascal3D

unsupervised VPNet + aligned LDOS [35] 64.68 42.46 89.01 0.95 0.06 0.00

unsupervised VpDR-Net + LDOS (ours) 42.34 16.72 71.35 0.93 0.23 0.22

fully supervised VPNet + Pascal3D 34.37 6.14 67.41 0.74 0.26 0.66

LDOS

unsupervised VPNet + aligned LDOS [35] 30.56 0.61 71.40 0.77 0.30 0.18

unsupervised VpDR-Net + LDOS (ours) 33.92 0.54 60.90 0.70 0.40 0.22

fully supervised VPNet + Pascal3D 61.45 2.55 82.97 0.96 0.15 0.00

Table 1. Viewpoint prediction. Angular error er and camera-center distance ec for absolute pose evaluation, and relative camera rotation

error erelR and translation error erelT for relative pose evaluation. APeR and APeC evaluate absolute angular error and camera-center

distance of the pose predictions taking into account the associated estimate confidence values. VpDR-Net trained on video sequences, is

compared to VPNet trained on aligned video sequences and a fully-supervised VPNet. ↑ (resp. ↓) means larger (resp. lower) is better.

↓ eR ↓ eC ↓ erelR ↓ erelT ↑ APeR
↑ APeC

Test set: LDOS

VpDR-Net (ours) 33.92 0.54 60.90 0.70 0.40 0.22

VpDR-Net-NoProb 45.33 0.67 69.33 0.85 0.12 0.07

VpDR-Net-NoDepth 68.19 0.85 82.99 1.01 0.01 0.01

VpDR-Net-NoAug 35.16 0.59 63.54 0.73 0.38 0.19

Test set: Pascal3D

VpDR-Net (ours) 42.34 16.72 71.35 0.93 0.23 0.22

VpDR-Net-NoProb 57.23 17.06 77.72 1.05 0.08 0.14

VpDR-Net-NoDepth 60.31 17.89 85.17 1.15 0.07 0.21

VpDR-Net-NoAug 43.52 18.80 72.93 0.92 0.10 0.17

Table 2. Viewpoint prediction. Different flavors of VpDR-Net

with removed components to evaluate their respective impact.

this problem by using the estimated scene geometry to gen-

erate new realistic viewpoints (fig. 3). Given a sample

(f i
t , g

i
t, D

i
t), we apply a random perturbation to the view-

point (with a forward bias to avoid unoccluding too many

pixels) and use depth-image-based rendering (DIBR) [22]

to generate a new sample (f i
∗, g

i
∗, D

i
∗), warping both the im-

age and the depth map.

Sometimes the depth map Di
t from KF contains too

many holes to yield satisfactory DIBR results (fig. 3, bot-

tom); we found preferable to use the depth D̂i
t = Φdepth(ft)

estimated by the network which is less accurate but more

robust, containing almost no missing pixels (fig. 3, top).

5. Experiments

We assess viewpoint estimation in sec. 5.1, depth predic-

tion in sec. 5.2, and point cloud prediction in sec. 5.3.

Datasets. Throughout the experimental section, we con-

sider three datasets for training and benchmarking our net-

work: (1) FreiburgCars (FrC) [35] which consists of RGB

video sequences with the camera circling around various

types of cars; (2) the Large Dataset of Object Scans

(LDOS) [6] containing RGBD sequences of man-made ob-

jects; and (3) Pascal3D [43], a standard benchmark for pose

estimation [39, 36].

For viewpoint estimation, Pascal3D already contains

viewpoint annotations. For LDOS, experiments focus on

the chair class. In order to generate ground truth pose an-

notations for evaluation, we manually aligned 3D recon-

structions of 10 randomly-selected chair videos and used

50 randomly-selected frames for each video as a test set.

For depth estimation, we evaluate on LDOS as it pro-

vides high quality depth maps one can use as ground truth.

For point cloud reconstruction, we use FrC and LDOS.

Ground truth point clouds for evaluation are obtained by

merging the SFM or RGBD depth maps from all frames of

a given test video sequence, sampling 3·104 points and post-

processing those using a 3D Laplacian filter. For FrC, five

videos were randomly selected and removed from the train

set, picking 60 random frames per video for evaluation. For

LDOS the pose estimation test frames are used.

Learning details. VpDR-Net is trained with stochastic gra-

dient descent with a momentum of 0.0005 and an initial

learning rate of 10−2. The weights of the losses were em-

pirically set to achieve convergence on the training set. Bet-

ter convergence was observed by training VpDR-Net in two

stages. First, Φdepth and Φvp were optimized jointly, lower-

ing the learning rate tenfold when no further improvement

in the training losses was observed. Then, Φpcl is optimized

after initializing the bias of its last layer, which corresponds

to an average point cloud of the object category, by ran-

domly sampling points from the ground truth models.

5.1. Pose estimation

Pascal3D. First, we evaluate the VpDR-Net viewpoint pre-

dictor on the Pascal3D benchmark [43]. Unlike previous

works [36, 39] that focus on estimating the object/camera

viewpoint represented by a 3 DoF rotation matrix, we eval-

uate the full 6 DoF camera pose represented by the rotation

matrix R together with the translation vector T .

In Pascal3D, the camera poses are expressed relatively

to the whole scenes instead of the objects themselves, so we

adjust the dataset annotations. We crop every object using

bounding box annotations after reshaping the box to a fixed

aspect ratio, and resize the crop to 240 × 320 pixels. The
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Figure 5. Monocular depth prediction. Cumulative RMS depth

reconstruction error for the LDOS data, when pixels are ranked by

ground truth depth (left) and by confidence (right).

Figure 6. Monocular depth prediction. Top: input image; mid-

dle: predicted depth; bottom: predicted depth confidence. Depth

maps are filtered by removing low confidence pixels.

camera pose is adjusted to the cropped object using the P3P

algorithm to minimize the reprojection error between the

camera-projected vertices of the ground truth CAD model

and the original projection after cropping and resizing.

Absolute pose evaluation. We first evaluate absolute cam-

era pose estimation using two standard measures: the angu-

lar error eR = 2−
1

2 ‖ lnR∗R̂⊤‖F between the ground truth

camera pose R∗ and the prediction R̂ [39, 36], as well as the

camera-center distance eC = ‖Ĉ − C∗‖2 between the pre-

dicted camera center Ĉ and the ground truth C∗. Following

the common practice [39, 36] we report median eR and eC
over all pose predictions on each test set.

Note that, while object viewpoints in Pascal3D and our

method are internally consistent for a whole category, they

may still differ between them by an arbitrary global 3D sim-

ilarity transformation. Thus, as detailed in the supplemen-

tary material, the two sets of annotations are aligned by a

single global similarity TG before assessment.

Relative pose evaluation. To assess methods with mea-

sures independent of TG we also evaluate: (1) the relative

rotation error between pairs of ground truth relative camera

motions R∗
tt′ and the corresponding predicted relative mo-

tions R̂tt′ given by erel
R = 2−

1

2 ‖ lnR∗
tt′R̂

⊤
tt′‖F and (2) the

normalized relative translation error erel
T = ‖T̂tt′ − T ∗

tt′‖2,

where both T̂tt′ and T ∗
tt′ are ℓ2-normalized so the measure

is invariant to the scaling component of TG. We report the

median errors over all possible image pairs in each test set.

Pose prediction confidence evaluation. A feature of our

model is to produce confidence scores with its viewpoint es-

timates. We evaluate the reliability of these scores by corre-

lating them with viewpoint prediction accuracy. In order to

do so, predictions are divided into “accurate” and “inaccu-

rate” by comparing their errors eR and eC to thresholds (set

to eR = π
6

following [36, 39] and eC = 15 and 0.5 for Pas-

cal3D or LDOS respectively). Predictions are then ranked

by decreasing confidence scores and the average precisions

APeR and APeC of the two ranked lists are computed.

Baselines. We compare our viewpoint predictor to a strong

baseline, called VPNet, trained using absolute viewpoint la-

bels. VPNet is a ResNet50 architecture [15] with the final

softmax classifier replaced by a viewpoint estimation layer

that predicts the 6 DoF pose ĝit. Following [39], rotation

matrices are decomposed in Euler angles, each discretized

in 24 equal bins. This network is trained to predict a soft-

max distribution over the angular bins and to regress a 3D

vector corresponding to the camera translation T . The aver-

age softmax value across the three max-scoring Euler angles

is used as a prediction confidence score.

We test both an unsupervised and a fully-supervised vari-

ant of VPNet. VPNet-unsupervised is comparable to our

setting and is trained on the output of the global cam-

era poses estimated from the videos by the state-of-the-art

sequence-alignment method of [35]. In the fully-supervised

setting, VPNet is trained instead by using ground-truth

global camera poses provided by the Pascal3D training set.

Results. Table 1 compares VpDR-Net to the VPNet

baselines. First, we observe that our baseline VPNet-

unsupervised is very strong, as we report eR = 49.6 er-

ror for the full rotation matrix, while the original method

of [35] reports an error of 61.5 just for the azimuth com-

ponent. Nevertheless, VpDR-Net outperforms VPNet in all

performance metrics except for a single case (eR for LDOS

chairs). Furthermore, the advantage is generally substantial,

and the unsupervised VpDR-Net reduces the gap with fully-

supervised VPNet by 20 % or better in the vast majority of

the cases. This shows the advantage of the proposed view-

point factorization method compared to aligning 3D shapes

as in [35]. Second, we observe that the confidence scores

estimated by VpDR-Net are significantly more correlated

with the accuracy of the predictions than the softmax scores

in VPNet, providing a reliable self-assessment mechanism.

The most confident viewpoint predictions of VpDR-Net are

shown in fig. 4.

Ablation study. We evaluate the importance of the differ-

ent components of VpDR-Net by turning them off and mea-

suring performance on the chair class. In table 2, VpDR-

Net-NoProb replaces the robust probabilistic losses LR and

LT with their non-probabilistic counterparts ℓR and ℓT , and

confidence predictions are replaced with random scores for

AP evaluation. VpDR-Net-NoDepth removes the depth

prediction and point cloud prediction branches during train-

ing, retaining only the Φvp subnetwork. VpDR-Net-NoAug

does not use the data augmentation mechanism of sec. 4.

We observe a significant performance drop when each of



Figure 7. Point cloud prediction. From a single input image of an unseen object instance (top row), VpDR-Net predicts the 3D geometry

of that instance in the form of a 3D point cloud (seen from two different angles, middle and bottom rows).

Test set LDOS FrC

Metric ↑ mVIoU ↓ mDpcl ↑ mVIoU ↓ mDpcl

Aubry [1] 0.06 1.30 0.21 0.41

VpDR-Net (ours) 0.13 0.20 0.24 0.28

VpDR-Net-Fuse (ours) 0.13 0.19 0.26 0.26

Table 3. Point cloud prediction. Comparison between VpDR-

Net and the method of Aubry et al. [1].

the components is removed. This confirms the importance

of all contributions in the network design. Interestingly, we

observe that the depth prediction branch Φdepth is crucial for

pose estimation (e.g. -34.27 eR on LDOS).

5.2. Depth prediction

The monocular depth prediction module of VpDR-Net is

compared against three baselines: VpDR-Net-Rand uses

VpDR-Net to estimate depth but predicts random confi-

dence scores. BerHu-Net is a variant of the state-of-the-

art depth prediction network from [18] based on the same

Φdepth subnetwork as VpDR-Net (but dropping Φpcl and

Φvp). Following [18], for training it uses the BerHu depth

loss and a dropout layer, which allows it to produce a confi-

dence score of the depth measurements at test time using the

sampling technique of [17, 9]. Finally, BerHu-Net-Rand is

the same network, but predicting random confidence scores.

Results. Fig. 5 (right) shows the cumulative root-mean-

squared (RMS) depth reconstruction error for LDOS after

sorting pixels by their confidence as estimated by the net-

work. By fitting better to inlier pixels and giving up on

outliers, VpDR-Net produces a much better estimate than

alternatives for the vast majority of pixels. Furthermore, ac-

curacy is well predicted by the confidence scores. Fig. 5

(left) shows the cumulative RMS by depth, demonstrating

that accuracy is better for pixels closer to the camera, which

are more likely to be labeled with correct depth. Qualitative

results are shown in fig. 6.

5.3. Point cloud prediction

We evaluate the point cloud completion module of

VpDR-Net by comparing ground truth point clouds C to

the point clouds Ĉ predicted by Φpcl using: (1) the voxel

intersection-over-union (VIoU) measure that computes the

Jaccard similarity between the volumetric representations

of Ĉ and C, and (2) the normalized point cloud distance

of [30]. We average these measures over the test set leading

to mVIoU and mDpcl (see supp. material for details).

VpDR-Net is compared against the approach of Aubry et

al. [1] using their code. [1] is a 3D CAD model re-

trieval method which first trains a large number of exem-

plar models which, in our case, are represented by indi-

vidual video frames with their corresponding ground truth

3D point clouds. Then, given a testing image, [1] detects

the object instance and retrieves the best matching model

from the database. We align the retrieved point cloud to

the object location in the testing image using the P3P algo-

rithm. For VpDR-Net, we evaluate two flavors. The origi-

nal VpDR-Net that predicts the point cloud Ĉ and VpDR-

Net-Fuse which further merges Ĉ with the predicted partial

depth map point cloud P̂ .

Table 3 shows that our reconstructions are significantly

better on both metrics for both LDOS chairs and FrC cars.

Fusing the results with the original depth map produces a

denser point cloud estimate and marginally improves the re-

sults. Qualitative results are shown in fig. 7.

6. Conclusion

We have demonstrated the power of motion cues in re-

placing manual annotations and synthetic data in learning

3D object categories. We have done so by proposing a sin-

gle neural network that simultaneously performs monocu-

lar viewpoint estimation, depth estimation, and shape re-

construction. This network is based on two innovations, a

new image-based viewpoint factorization method and a new

probabilistic shape representation. The contribution of each

component was assessed against suitable baselines.
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A. Method: additional details

A.1. Scale ambiguity in SFM

In Sec. 3.2 in the paper, we explain that the scale am-

biguity of structure from motion (SFM) causes each recon-

struction of a sequence Si to be known only up to a global

sequence specific scaling factor λi. Since λi is not required

to learn Φvp, but it is important for depth prediction (as dis-

cussed in Sec. 3.3 from the paper), we estimate it as well.

To do so, we note that, given a pair of frames (t, t′)
from sequence Si, one can estimate the sequence scale as

λi
t,t′ =

‖T i
t′
−Ri

t′t
T i
t ‖

‖T̂ i
t′
−Ri

t′t
T̂ i
t ‖
. This expression allows us to conve-

niently estimate λi on the fly as a moving average during

the SGD iterations used to learn Φvp, as samples λi
t,t′ can

be computed essentially for free during this process.

A.2. The VpDRNet architecture: further details

This section contains additional details about the layers

that compose the different components of the VpDR-Net

architecture.

The core architecture. The architecture of the VpDR-Net

(introduced in Sec. 3.2 from the paper) is a variant of the

ResNet-50 architecture [3] with some modifications to im-

prove its performance as a viewpoint and depth predictor

that we detail below.

In order to decrease the degree of geometrical invariance

of the network, we first replace all 1× 1 downsampling fil-

ters with full 2 × 2 convolutions. We then attach bilinear

upsampling layers that first resize features from 3 different

layers of the architecture (res2d, res3d, res4d) into fixed-

size tensors and then sum them in order to create a mul-

tiscale intermediate image representation which resembles

hypercolumns (HC) [2]. An extension of Fig. 2 from the

paper that contains the diagram of this HC module can be

found in Figure A.

Architecture of the viewpoint factorization network Φvp.

HC is followed by 3 modified 3× 3 downsampling residual

layers that produce the final viewpoint prediction. While

the standard downsampling residual layers do not contain

the residual skip connection due to different sizes of the in-

put and output tensors, here we retain the skip connection

by performing 3 × 3 average pooling over the input tensor

and summing the result with the result of the second 3 × 3
downsampling convolution branch. We further remove the

ReLU after the final residual summation layer. Figure C

contains an overview of the viewpoint estimation module

together with a detailed illustration of the modified down-

sampling residual blocks.

Architecture of the depth prediction Φdepth. The depth

prediction network (introduced in Sec. 3.3 from the paper)

shares the early HC layers with the viewpoint factorization

network Φvp. The remainder of the pipeline is based on the

state-of-the-art depth estimation method of [5]. More pre-

cisely, after attaching 2 standard residual blocks to the HC

layers, the network also contains two 2x2 up-projection lay-

ers from [5] leading to a 64-dimensional representation of

the same size as the input image. This is followed by 1x1

convolutional filters that predict the depth and confidence

maps D̂t and σ̂dj
respectively. Figure B contains an illus-

tration of Φdepth.

Architecture of the point cloud completion network Φpcl.

Differently from the two previous networks, the point cloud

completion network Φpcl (introduced in Sec. 3.4 from the

paper) is not convolutional but uses a residual multi-layer

perceptron (MLP), i.e. a sequence of residual fully con-

nected layers.

In more details, the network starts by appending to each

3D point p̂i ∈ P̂G
f ⊂ R

3 an appearance descriptor ai and

processes this input with an MLP with an intermediate pool-

ing operator:

(Ŝ, δ̂) = Φpcl(P̂
G
f ) = MLP2



 pool
1≤i≤|P̂G

f
|

MLP1(p̂i, ai)



 .

The intermediate pooling operator, which is permutation in-

1



30x40x256

15x20x512

7x10x1024

ResNet50

S
u

m

U
p

sa
m

p
le

R
eL

u
 

Res4c

Res2c

Res5c

Hypercolumn descriptor (HC)

35x46x256

3
x

3
 C

o
n

v

120x160x3

30x40x256

15x20x512

7x10x1024

ResNet50

S
u

m

U
p

sa
m

p
le

R
eL

u
 

Res4c

Res2c

Res5c

Hypercolumn descriptor (HC)

35x46x256

3
x

3
 C

o
n

v

frame

Viewpoint & Depth estimation CNN

frame

120x160x3

weights are shared in the Siamese architecture

Figure A. The core architecture of VpDR-Net. This figure extends the Viewpoint & Depth estimation block from Figure 2 in the paper

and describes the architecture of the hypercolumn (HC) module.

Figure B. The architecture of Φdepth.

variant, removes the dependency on the number and order

of input points P̂G
f . In practice, the pooling operator uses

both max and sum pooling, stacking the results of the two.

For the appearance descriptors, recall that each point p̂i
is the back-projection of a certain pixel (ui, vi) in image

f . To obtain the appearance descriptor ai we reuse the HC

features from the core architecture and sample a column of

feature channels at location (ui, vi) using differentiable bi-

linear sampling. Note that, following [10], the fully con-

nected residual blocks contain leaky-ReLUs with the leak

factor set to 0.2. A diagram depicting Φpcl can be found in

Figure D.

B. Experimental evaluation

In this section we provide additional details about the

learning procedures of the baseline networks and about the

experimental evaluation.

Figure C. The architecture of Φvp. Top: the layers of Φvp, bottom:

A detail of the 3x3 downsampling residual block.

B.1. Learning details of BerHuNet and VPNet

In this section we provide learning details for the BerHu-

Net and VPNet baselines. The learning rates and batch sizes

were in all cases adjusted empirically such that the conver-

2





B.3. Absolute pose evaluation protocol

As noted in the paper, the absolute pose error metrics

eR and eC can be computed only after aligning the implicit

global coordinate frames of the benchmarked network and

of the ground truth annotations. This procedure is explained

in detail below.

Given a set of ground truth camera poses g∗i = (R∗
i , T

∗
i )

and the corresponding predictions ĝi = (R̂i, T̂i), we want to

estimate a global similarity transform TG = (RG, TG, sG),
parametrized by a scale sG ∈ R, translation TG ∈ R

3 and

rotation RG ∈ SO(3), such that the coordinate frames of

g∗i and ĝi become aligned.

In more detail, the desired global similarity transform

satisfies the following equation:

R̂i(RGX + TG) + sGT̂i = R∗
iX + T ∗

i ; ∀X (1)

i.e. given an arbitrary world-coordinate point X ∈ R
3, its

projection into the coordinate frame of g∗i (the right part of

eq. (1)) should be equal to the projection of X into the co-

ordinate frame of ĝi after transforming X with RG, TG and

scaling the corresponding camera translation vector T̂i with

sG (the left side of eq. (1)). Note that for LDOS data TG
corresponds to a rigid motion and sG = 1. Given TG, the

adjusted camera matrices ĝADJUST
i for which ĝADJUST

i ≈
g∗i are then computed with

ĝADJUST
i = ( R̂iRG , R̂iTG + sGT̂i )

In order to estimate TG, X is substituted in eq. (1) with

X = C∗
i = −R∗

i
TT ∗

i , i.e. X is set to be the center of

the ground truth camera g∗i which is a valid point of the

world coordinate frame. After performing some additional

manipulations, we end up with the following constraint:

1

sG
RGC

∗
i +

1

sG
TG = Ĉi ; ∀i (2)

where Ĉi = −R̂T
i T̂i is the center of the predicted camera

ĝi. Given the corresponding camera pairs {(g∗i , ĝi)}
N
i=1

the

constraint in eq. (2) is converted to a least squares mini-

mization problem:

arg min
RG,TG,sG

N
∑

i=1

||
1

sG
RGCi +

1

sG
TG − Ĉi||

2 (3)

and solved using the UMEYAMA algorithm [12].

For Pascal3D we estimate TG from the held-out training

set and later use it for evaluation on the test set. For LDOS,

due to the absence of a held-out annotated training set, we

estimate TG on the test set.

B.4. Point cloud prediction

The normalized point cloud distance of [8] is com-

puted as Dpcl(C, Ĉ) = 1

|C|

∑

c∈C minĉ∈Ĉ ‖ĉ − c‖ +

Test set LDOS FrC

Metric ↑ mVIoU ↓ mDpcl ↑ mVIoU ↓ mDpcl

Aubry [1] 0.06 1.30 0.21 0.41

VpDR-Net-P̂f 0.10 0.37 0.11 0.56

VpDR-Net-Chamfer 0.09 0.18 0.20 0.24

VpDR-Net-Ŝ 0.12 0.27 0.18 0.50

VpDR-Net (ours) 0.13 0.20 0.24 0.28

VpDR-Net-Fuse (ours) 0.13 0.19 0.26 0.26

Table A. Point cloud prediction ablative study. Comparison

between VpDR-Net and the method of Aubry et al. [1] and an

additional ablative study.

1

|Ĉ|

∑

ĉ∈Ĉ minc∈C ‖ĉ− c‖. For the VIoU measure, a voxel

grid is setup around each ground truth point-cloud C by uni-

formly subdividing C’s bounding volume into 303 voxels.

The point clouds are compared within the local coordi-

nate frames of each frame’s camera (whose focal length is

assumed to be known). Furthermore, since the SFM re-

constructions are known only up to a global scaling fac-

tor, we adjust each point cloud prediction Ĉ from the FrC

dataset by multiplying it with a scaling factor ζ that aligns

the means of Ĉ and C. Note that ζ can be computed analyt-

ically with:

ζ =
µT
CµĈ

µT

Ĉ
µĈ

,

where µC = 1

|C|

∑

cm∈C cm is the centroid of the point

cloud C.

Ablative study. In table 2 in the paper, we have presented

a comparison of VpDR-Net to the baseline approach from

[1]. Here we provide an additional ablative study that eval-

uates the contribution of the components of Φpcl. More ex-

actly, table A extends table 2 from the paper with the fol-

lowing flavours of VpDR-Net: (1) VpDR-Net-P̂f which

only predicts the partial point cloud Pf , (2) VpDR-Net-

Chamfer which removes the density predictions δ̂ and re-

places lpcl(Ŝ) with a Chamfer distance loss and (3) VpDR-

Net-Ŝ that predicts the raw unfiltered and untruncated point

cloud Ŝ.

The drops in performance by predicting solely the raw

and partial point clouds P̂f and Ŝ emphasize the impor-

tance of the point cloud completion and density prediction

components respectively. The Chamfer distance loss brings

marginal improvements in Dpcl but a significant decrease

of VIoU due to the inability of the network to represent and

discard outliers.

Related methods. Note that apart from [1], there exist

newer works that tackle the problem of single-view 3D re-

construction [4, 6], However these were not considered due

to their requirement of renderable mesh models which are

not available in our supervision setting.
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C. Qualitative results

Figures E to H contain additional viewpoint estimation

results on Pascal3D. Differently from fig. 4 in the paper

that was showing the most confident results, here we show

randomly selected results of both VpDR-Net and the VP-

Net which was trained on the corresponding aligned dataset

(FrC or LDOS). Please refer to the captions for further de-

tails.

Additionally, in fig. I we provide qualitative comparisons

of depth predictions between VpDR-Net and BerHu-Net on

randomly selected images from the test set of LDOS. For an

improved visualization, only the 80 % most confident pixel

depth predictions are shown in each image, based on the

confidence estimated by each model.
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[2] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Hyper-

columns for object segmentation and fine-grained localiza-

tion. In Proc. CVPR, 2015. 1

[3] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In Proc. CVPR, 2016. 1

[4] Q. Huang, H. Wang, and V. Koltun. Single-view reconstruc-

tion via joint analysis of image and shape collections. ACM

Transactions on Graphics (TOG), 34(4):87, 2015. 4

[5] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and

N. Navab. Deeper depth prediction with fully convolutional

residual networks. In 3DV, 2016. 1, 3

[6] F. Massa, B. C. Russell, and M. Aubry. Deep exemplar 2d-3d

detection by adapting from real to rendered views. In Proc.

CVPR, 2016. 4

[7] B. Pepik, M. Stark, P. Gehler, and B. Schiele. Teaching 3d

geometry to deformable part models. In Proc. CVPR, 2012.

3

[8] J. Rock, T. Gupta, J. Thorsen, J. Gwak, D. Shin, and

D. Hoiem. Completing 3d object shape from one depth im-

age. In Proc. CVPR, 2015. 4

[9] N. Sedaghat and T. Brox. Unsupervised generation of a view-

point annotated car dataset from videos. In Proc. ICCV,

2015. 3

[10] M. Tatarchenko, A. Dosovitskiy, and T. Brox. Multi-view 3d

models from single images with a convolutional network. In

Proc. ECCV, 2016. 2

[11] S. Tulsiani and J. Malik. Viewpoints and keypoints. In Proc.

CVPR, 2015. 3

[12] S. Umeyama. Least-squares estimation of transformation pa-

rameters between two point patterns. PAMI, 13(4):376–380,

1991. 4

[13] Y. Xiang, R. Mottaghi, and S. Savarese. Beyond pascal: A

benchmark for 3d object detection in the wild. In WACV,

2014. 3

5



Figure E. Viewpoint prediction on Pascal3D for VpDR-Net (ours) on the car class. We show 40 randomly selected predictions from

the test set sorted in descending order according to the predicted confidence scores. The images are sorted along the rows from left to right

and from top to bottom, i.e. the most confident viewpoint is in the top left corner while the least confident image resides in the bottom right

corner.

Figure F. Viewpoint prediction on Pascal3D for VPNet (baseline) trained on aligned FrC on the car class. We show 40 randomly

selected predictions from the test set sorted in descending order according to the predicted confidence scores. The images are sorted along

the rows from left to right and from top to bottom, i.e. the most confident viewpoint is in the top left corner while the least confident image

resides in the bottom right corner.
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Figure G. Viewpoint prediction on Pascal3D for VpDR-Net (ours) on the chair class. We show 40 randomly selected predictions from

the test set sorted in descending order according to the predicted confidence scores. The images are sorted along the rows from left to right

and from top to bottom, i.e. the most confident viewpoint is in the top left corner while the least confident image resides in the bottom right

corner.

Figure H. Viewpoint prediction on Pascal3D for VPNet (baseline) trained on aligned LDOS on the chair class. We show 40 randomly

selected predictions from the test set sorted in descending order according to the predicted confidence scores. The images are sorted along

the rows from left to right and from top to bottom, i.e. the most confident viewpoint is in the top left corner while the least confident image

resides in the bottom right corner.
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Figure I. Depth prediction on random images from LDOS comparing the predicted depth values as well as the predicted depth confidence

of VpDR-Net (ours) and BerHu-Net.
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