
Continuous Surface Embeddings

Natalia Neverova David Novotny Vasil Khalidov Marc Szafraniec
Patrick Labatut Andrea Vedaldi

Facebook AI Research

Abstract

In this work, we focus on the task of learning and representing dense correspon-
dences in deformable object categories. While this problem has been considered
before, solutions so far have been rather ad-hoc for specific object types (i.e.,
humans), often with significant manual work involved. However, scaling the ge-
ometry understanding to all objects in nature requires more automated approaches
that can also express correspondences between related, but geometrically differ-
ent objects. To this end, we propose a new, learnable image-based representation
of dense correspondences. Our model predicts, for each pixel in a 2D image, an
embedding vector of the corresponding vertex in the object mesh, therefore estab-
lishing dense correspondences between image pixels and 3D object geometry. We
demonstrate that the proposed approach performs on par or better than the state-of-
the-art methods for dense pose estimation for humans, while being conceptually
simpler. We also collect a new in-the-wild dataset of dense correspondences for
animal classes and demonstrate that our framework scales naturally to the new
deformable object categories.

1 Introduction

Understanding the geometry of natural objects, such as humans and other animals, must start from
the notion of correspondence. Correspondences tell us which parts of different objects are geometri-
cally equivalent, and thus form the basis on which an understanding of geometry can be developed.
In this paper, we are interested in particular in learning and computing correspondence starting from
2D images of the objects, a preliminary step for 3D reconstruction and other applications.

While the correspondence problem has been considered many times before, most solutions still
involve a significant amount of manual work. Consider for example a state-of-the-art method such
as DensePose [17]. Given a new object category to model with DensePose, one must start by defining
a canonical shape S, a sort of ‘average’ 3D shape used as a reference to express correspondences.
Then, a dataset of images of the object must be collected and annotated with millions of manual
point correspondences between the images and the canonical 3D model. Finally, the model must be
manually partitioned into a number of parts, or charts, and a deep neural network must be trained to
segment the image and regress the uv coordinates for each chart, guided by the manual annotations,
yielding a DensePose predictor. Given a new category, this process must be repeated from scratch.

There are some obvious scalability issues with this approach. The most significant one is that the
entire process must be repeated for each new object category one wishes to model. This includes the
laborious step of collecting annotations for the new class. However, categories such as animals share
significant similarities between them; for instance, recently [44] has shown that DensePose trained
on humans transfers well on chimpanzees. Thus, a much better scalable solution can be obtained
by sharing training data and models between classes. This brings us to the second shortcoming of
DensePose: the nature of the model makes it difficult to realize this information sharing. In par-
ticular, the need for breaking the canonical 3D models into different charts makes relating different
models cumbersome, particularly in a learning setup.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

E
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

⇥
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

⇥
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

⇥
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

⇥
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

⇥
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

⇥
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

. . .
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

. . .
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

input
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

output:
continuous surface mappings

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

input
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

class-based matching
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

I
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

U
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

V
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

E = �(I)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

predictor, �
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

predictor, �
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

surface S
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

surface S0
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

surface S00
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

LBO basis, US 2 RK⇥M
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

LBO basis, US0 2 RK0⇥M
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

LBO basis, US00 2 RK00⇥M
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

C
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

C 0
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

C 00
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Ê
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Ê0
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Ê00
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

embedding {eS}
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

embedding {eS0}
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

embedding {eS00}
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

texture maps
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

universal positional embedding
E 2 RH⇥W⇥D (D = 16)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

segmentation and UV maps (D = 75)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

dog
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

cat<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

person
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

person
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

person
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

(a) DensePose (IUV)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

(b) This work (CSE)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 1: Overview. Compared to DensePose [17], our CSE framework is conceptually simpler
and is directly extendable to multi-class problems through learning a universal dense pose network.
(Color coding for each class mesh in the figure is chosen arbitrarily and independently from others.)

One important contribution of this paper is to introduce a better and more flexible representation of
correspondences that can be used as a drop-in replacement in architectures such as DensePose. The
idea is to introduce a learnable positional embedding. Namely, we associate each point X of the
canonical model S to a compact embedding vector eX , which provides a deformation-invariant rep-
resentation of the point identity. We also note that the embedding can be interpreted as a smoothly-
varying function defined over the 3D model S, interpreted as a manifold. As such, this allows us to
use the machinery of functional maps [39] to work with the embeddings, with two important advan-
tages: (1) being able to significantly reduce the dimensionality of the representation and (2) being
able to efficiently relate representations between models of different object categories.

Empirically, we show that we can learn a deep neural network that predicts, for each pixel in a 2D
image, the embedding vector of the corresponding object point, therefore establishing dense cor-
respondences between the image pixels and the object geometry. For humans, we show that the
resulting correspondences are as or more accurate than the reference state-of-the-art DensePose im-
plementation, while achieving a significant simplification of the DensePose framework by removing
the need of charting the model. As an additional bonus, this removes the ‘seams’ between the parts
that affect DensePose. Then, we use the ability of the functional maps to relate different 3D shapes
to help transferring information between different object categories. With this, and a very small
amount of manual training data, we demonstrate for the first time that a single (universal) Dense-
Pose network can be extended to capturing multiple animal classes with a high degree of sharing in
compute and statistics. The overview of our method with learning continuous surface embeddings
(CSE) is shown in Fig. 1b (for comparison, the DensePose [17] setup (IUV) is shown in Fig. 1a).

2 Related work

Human pose recognition. With deep learning, image-based human pose estimation has made
substantial progress [52, 37, 12], also due to the availability of large datasets such as COCO [31],
MPII [3], Leeds Sports Pose Dataset (LSP) [23, 24], PennAction [58], or PoseTrack [2]. Our work
is most related with DensePose [17], which introduced a method to establish dense correspondences
between image pixels and points on the surface of the average SMPL human mesh model [32].

2

Unsupervised pose recognition. Most pose estimators [5, 49, 7, 50, 43, 48, 33, 59, 22] require
full supervision, which is expensive to collect, especially for a model such as DensePose. A handful
of works have tackled this issue by seeking unsupervised and weakly-supervised objectives, using
cues such as equivariance to synthetic image transformations. The most relevant to us is Slim Dense-
Pose [36], which showed that DensePose annotations can be significantly reduced without incurring
a large performance penalty, but did not address the issue of scaling to multiple classes.

Animal pose recognition. Compared to humans, animal pose estimation is significantly less
explored. Some works specialise on certain animals (tigers [30], cheetahs [35] or drosophila
melanogaster flies [19]). Tulsiani et al. [51] transfer pose between annotated animals and un-
annotated ones that are visually similar. Several works have focused on animal landmark detection.
Rashid et al. [41] and Yang et al. [55] studied animal facial keypoints. A well explored class are birds
due to the CUB dataset [53]. Some works [57, 45] proposed various types of detectors for birds,
while others explored reconstructing sparse [38] and dense [26, 25, 13] 3D shapes. Beyond birds,
Zuffi et al. [61, 62, 60] have explored systematically the problem of reconstructing 3D deformable
animal models from image data. They utilise the SMAL animal shape model, which is an analogue
for animals of the more popular human SMPL model for humans [32]. While [61, 62] are based on
fitting 2D keypoints at test time, Biggs et al. [6] directly regresses the 3D shape parameters instead.
Recently, Kulkarni et al. [28, 29] leveraged canonical maps to perform the 3D shape fitting as well
as establishing of dense correspondences across different instances of an animal species.

3D shape analysis. Our work is also related to the literature that studies the intrinsic geometry
of 3D shapes. Early approaches [15, 9] analysed shapes by performing multi-dimensional scaling
of the geodesic distances over the shape surface, as these are invariant to isometric deformations.
Later, Coifman and Lafon [14] popularized the diffusion geometry due to its increased robustness
to small perturbations of the shape topology. The seminal work of Rustamov [42] proposed to use
the eigenfunctions of the Laplace-Beltrami operator (LBO) on a mesh to define a basis of functions
that smoothly vary along the mesh surface. The LBO basis was later leveraged in other diffu-
sion descriptors such as the heat kernel signature (HKS) [47], wave kernel signature (WKS) [4] or
Gromov-Hausdorff descriptors [10]. A scale-invariant version of HKS was introduced in [11], while
[8] proposed an HKS-based equivalent of the image BoW descriptor [46]. While HKS/WKS estab-
lish ‘hard’ correspondences between individual points on shapes, Ovsjanikov et al. [39] introduced
the functional maps (FM) that align shapes in a soft manner by finding a linear map between spaces
of functions on meshes. Interestingly, [39] has revealed an intriguing connection between FMs and
their efficient representation using the LBO basis. The FM framework became popular and was later
extended in [40, 27, 1]. Relevantly to us, [34] proposed ZoomOut, a method that estimates FM in a
multi-scale fashion, which we improve for our species-to-species mesh correspondences.

3 Method

We propose a new approach for representing continuous correspondences (or surface embeddings,
CSE) between an image and points in a 3D object. To this end, let S ⊂ R3 be a canonical surface.
Each point X ∈ S should be thought of as a ‘landmark’, i.e. an object point that can be identi-
fied consistently despite changes in viewpoint, object deformations (e.g. a human moving), or even
swapping an instance of the object with another (e.g. two different humans).

In order to express these correspondences, we consider an embedding function e : S → RD asso-
ciating each 3D point X ∈ S to the corresponding D-dimensional vector eX . Then, for each pixel
x ∈ Ω of image I , we task a deep network Φ with computing the corresponding embedding vector
Φx(I) ∈ RD. From this, we recover the corresponding canonical 3D point X ∈ S probabilistically,
via a softmax-like function:

p(X|x, I, e,Φ) =
exp (−〈eX ,Φx(I)〉)∫

S
exp (−〈eX ,Φx(I)〉) dX . (1)

In this formulation, the embedding function eX is learnable just like the network Φ. The sim-
plest way of implementing this idea is to approximate the surface S with a mesh with vertices
X1, . . . , XK ∈ S, obtaining a discrete variant of this model:

p(k|x, I, E,Φ) =
exp (−〈ek,Φx(I)〉)∑K
k=1 exp (−〈ek,Φx(I)〉)

, (2)

3

c

c

discontinuities
between
segments

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

cspatially
smooth
mapping

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

optimal
solution

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

M = 32
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

M = 256
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

M = 1024
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

CSE training for di↵erent sizes of LBO bases
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

IUV training (DensePose)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 2: Comparison of IUV (DensePose [17]), and CSE-learned mappings (vertices predicted in
the image are shown in color). CSE training produces smooth seamless predictions with no shrinking
effect (the remaining discontinuities are due to biases in annotations, see the suppl. mat. for details).

where ek = eXk
is a shorthand notation of the embedding vector associated to the k-th vertex of the

mesh and E is the K ×D matrix with all the embedding vectors {ek}Kk=1 as rows.

Given a training set of triplets (I, x, k), where I is an image, x a pixel, and k the index of the
corresponding mesh vertex, we can learn this model by minimizing the cross-entropy loss:

L(E,Φ) = − avg
(I,x,k)∈T

log p(k|x, I, E,Φ). (3)

We found it beneficial to modify this loss to account for the geometry of the problem, minimizing
the cross entropy between a ‘Gaussian-like’ distribution centered on the ground-truth point k and
the predicted posterior:

Lσ = − avg
(I,x,k)∈T

K∑
q=1

gS(q; k) log p(q|x, I, E,Φ), gS(q; k) ∝ exp

(
− 1

2σ2
dS(Xq, Xk)

)
(4)

where dS : S × S → R+ is the geodesic distance between points on the surface.

Comparison with DensePose. DensePose [17], which is the current state-of-the-art approach
for recovering dense correspondences, decomposes the canonical model S = ∪Ji=1S̃i into J

non-overlapping patches each parametrized via a chart fi : S̃i → [0, 1]2 mapping the patch
S̃i to the square [0, 1]2 of local uv coordinates. DensePose then learns a network that maps
each pixel x in an image I of the object to the corresponding chart index and uv coordinate as
Φx(I) = (i, u, v) ∈ {1, . . . ,M} × [0, 1]2.

An issue with this formulation is that the charting (S̃i, fi) of the canonical model S is arbitrary
and needs to be defined manually. The DensePose network Φ then needs to output, for each pixel
u, a probability value that the pixel belongs to one of the J charts, plus possible chart coordinates
(u, v) ∈ [0, 1]2 for each patch. This requires at minimum J + 2 values for each pixel, but in practice
is implemented as a set of 3J channels as different patches use different coordinate predictors. Our
model eq. (2) is a substantial simplification because it only requires the initial mesh, whereas the
embedding matrix E is learned automatically. This reduces the amount of manual work required
to instantiate DensePose, removes the seams between the different charts S̃i, that are arbitrary, and,
perhaps most importantly, allows to share a single embedding space, and thus network, between
several classes, as discussed below.

3.1 Injecting geometric knowledge via spectral analysis

There are three issues with the formulation we have given so far. First, the embedding matrix E
is large, as it contains D parameters for each of the K mesh vertices. Second, the representation
depends on the discretization of the mesh, so for example it is not clear what to do if we resample
the mesh to increase its resolution. Third, it is not obvious, given two surfaces S and S′ for two
different object categories (e.g. humans and chimps), how their embeddings e and e′ can be related.

4

SMPL!cat
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

SMPL!dog
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

SMPL!bear
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

SMPL!horse
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

SMPL!sheep
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

SMPL!giraffe
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

densepose_eval_data/demo_people_.jpg
https://unsplash.com/photos/SAwxJ8PHY3Q

SMPL
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 3: Initializing animal predictor from a human-trained network and mesh mappings by
setting Ê′ = CÊ for each animal class (see 3.3 for details). For each image-mesh pair, the color
coding corresponds to the new target animal category, as displayed on the corresponding 3D model.

We can elegantly solve these issues by interpreting eX as a smooth function S → RD defined on
a manifold S, of which the mesh is a discretization. Then, we can use the machinery of functional
maps [39] to manipulate the encodings, with several advantages.

For this, we begin by discretizing the representation; namely, given a real function r : S → R
defined on the surface S, we represent it as a K-dimensional vector r ∈ RK of samples rk = r(Xk)
taken at the vertices. Then, we define the discrete Laplace-Beltrami operator (LBO) L = A−1W
where A ∈ RK×K+ is diagonal and W ∈ RK×K positive semi-definite (see below for details). The
interest in the LBO is that it provides a basis for analyzing functions defined on the surface. Just
like the Fourier basis in Rn is given by the eigenfunctions of the Laplacian, we can define a ‘Fourier
basis’ on the surface S as the matrix U ∈ RK×K of generalized eigenvectors WU = AUΛ, where
Λ is a diagonal matrix of eigenvalues. Due to A, the matrix U is orthonormal w.r.t. the metric A,
in the sense that U>AU = I . Each column uk of the matrix U is a K-dimensional vector defining
an eigenfunction on the surface S, corresponding to eigenvalue λk ≥ 0. The ‘Fourier transform’
of function r is then the vector of coefficients r̂ such that r = U r̂. Furthermore, if we retain in U
only the columns corresponding to the M smallest eigenvalues, so that U ∈ RK×M , setting r = U r̂
defines a smooth (low-pass) function. Appendix A.1 explains how we construct W and A in detail.

This machinery is of interest to us because we can regard the i-th component (ek)i of the embedding
vectors as a scalar function defined on the mesh. Furthermore, we expect this function to vary
smoothly, meaning that we can express the overall code matrix as E = UÊ, where Ê ∈ RM×D is
a matrix of coefficients much smaller than E ∈ RK×D. In other words, we have used the geometry
of the mesh to dramatically reduce the number of parameters to learn. LBO bases can also be used
to relate different meshes, as explained next.

3.2 Relating different categories

Let S and S′ be the canonical shapes of two objects, e.g. human and chimp. The shapes are anal-
ogous, but also sufficiently different to warrant modelling them with related but distinct canonical
shapes. In the discrete setting, a functional map (FM) [39] is just a linear map T ∈ RK′×K sending
functions r defined on S to functions r′ = Tr defined on S′. The space of such maps is very large,
but we are interested particularly in two kinds. The first are point-to-point maps, which are anal-
ogous to permutation matrices Π, and thus express correspondences between the two shapes. The
second kind are maps restricted to low-pass functions on the two surfaces. Assuming that functions
can be written as r = U r̂ and r′ = U ′r̂′ for LBO bases (U,A) and (U ′, A′), the functional map
r′ = Tr can be written in an equivalent manner as r̂′ = C r̂ where C = (U ′)>A′TU acts on the
spectra of the functions. The advantage of the spectral representation is that the M ′ ×M matrix C
is generally much smaller than the K ′ ×K matrix T . Then, we can relate positional embeddings E
and E′ for the two shapes, which are smooth, as Ê′ ≈ CÊ.

When shapes S and S′ are approximately isometric, we can resort to automatic methods to establish
correspondences Π (or C) between them. When S and S′ are not, this is much harder. Instead, we
start from a small number of manual correspondences (kj , k

′
j), j = 1, . . . , Q between surfaces and

interpolate those using functional maps. To do this, we use a variant of the ZoomOut method [34]
due to its simplicity. This amounts to alternating two steps: given a matrix C of order M1 ×M1,

5

category LVIS training set test set

inst. # inst. # corresp. coverage # inst. # corresp. coverage

dog 2317 483 1424 21.5% 200 596 10.1%
cat 2294 586 1720 23.9% 200 591 10.0%
bear 776 98 289 4.8% 200 589 9.0%
sheep 1142 257 765 13.3% 200 511 10.2%
cow 1686 426 1267 19.7% 200 593 9.9%
horse 2299 605 1783 25.8% 200 587 10.0%
zebra 1999 665 1968 28.8% 200 592 10.6%
giraffe 2235 651 1936 27.4% 200 594 10.2%
elephant 2242 670 1992 28.1% 200 592 10.0%

Table 1: Annotation statistics of the DensePose-LVIS dataset. ‘Coverage’ is expressed as the
number of vertices in a given class mesh with at least one corresponding ground truth annotation.
The corresponding animal meshes are shown on the right (source: hum3d.com).

we decode this as a set of point-to-point correspondences (kj , k
′
j); then, given (kj , k

′
j), we estimate

a matrix C of order M2 > M1, increasing the resolution of the match. This is done for a sequence
Mt = 12, 16, . . . , 256 until the desired resolution is achieved (see Appendix A.2 for details).

3.3 Cross-species DensePose with functional maps

We are now ready to describe how functional maps can be used to facilitate transferring and shar-
ing a single DensePose predictor Φ between categories with different canonical shapes S, S′ and
corresponding per-vertex embeddings E,E′.

To this end, assume that we have learned the pose regressor Φ on a source category (S,E) (e.g. hu-
mans). We are free to apply Φ to an image I ′ of a different category (S′, E′) (e.g. chimps), but, while
we might know S′, we do not know E′. However, if we assume that the regressor Φ can be shared
among categories, then it is natural to also share their positional embeddings as well. Namely, we
assume that E′ is approximately the same as E up to a remapping of the embedding vectors from
shape S to shape S′. Based on the last section, we can thus write Ê′ = CÊ, or, equivalently,
E′ = TE where T = U ′CU>A. With this, we can simply replace E with E′ in eq. (2) to now
regress the pose of the new category using the same regressor network Φ. For training, we optimise
the same cross entropy loss L(E,Ψ) in eq. (3), just combining images and annotations from the two
object categories and swapping E and E′ depending on the class of the input image.

The procedure above can be easily generalised to any number of categories S1, . . . , SK with refer-
ence to the same source category S and functional maps C1, . . . , CK. In our case, we select humans
as source category as they contain the largest number of annotations.

4 Datasets

We rely on the DensePose-COCO dataset [17] for evaluation of the proposed method on the human
category and comparison with the DensePose (IUV) training. For the multi-class setting, we make
use of a recent DensePose-Chimps [44] test benchmark containing a small number of annotated
correspondences for chimpanzees. We split the set of annotated instances of [44] into 500 training
and 430 test samples containing 1354 and 1151 annotated correspondences respectively.

Additionally, we collect correspondence annotations on a set of 9 animal categories of the LVIS
dataset [21]. Based on images from the COCO dataset [31], LVIS features significantly more accu-
rate object masks. We refer to this data as DensePose-LVIS. The annotation statistics for the col-
lected animal correspondences are given in Table 1. Note that compared to the original DensePose-
COCO labelling effort that produced 5 million annotated points for the human category (96% cov-
erage of the SMPL mesh), our annotations are three orders of magnitude smaller and only 18% of
vertices of animal meshes, on average, have at least one ground truth annotation.

6

hum3d.com

architecture AP AP50 AP75 APM APL AR AR50 AR75 ARM ARL

IU
V

(b
as

el
in

es
)

DP-RCNN (R50) [17] 54.9 89.8 62.2 47.8 56.3 61.9 93.9 70.8 49.1 62.8
DP-RCNN (R101) [17] 56.1 90.4 64.4 49.2 57.4 62.8 93.7 72.4 50.1 63.6
Parsing-RCNN [56] 65 93 78 56 67 – – – – –
AMA-net [20] 64.1 91.4 72.9 59.3 65.3 71.6 94.7 79.8 61.3 72.3

DP-RCNN* (R50) 65.3 92.5 77.1 58.6 66.6 71.1 95.3 82.0 60.1 71.9
DP-RCNN* (R101) 66.4 92.9 77.9 60.6 67.5 71.9 95.5 82.6 62.1 72.6
DP-RCNN-DeepLab* (R50) 66.8 92.8 79.7 60.7 68.0 72.1 95.8 82.9 62.2 72.4
DP-RCNN-DeepLab* (R101) 67.7 93.5 79.7 62.6 69.1 73.6 96.5 84.7 64.2 74.2

CS
E

DP-RCNN* (R50) 66.1 92.5 78.2 58.7 67.4 71.7 95.5 82.4 60.3 72.5
DP-RCNN* (R101) 67.0 93.8 78.6 60.1 68.3 72.8 96.4 83.7 61.5 73.6
DP-RCNN-DeepLab* (R50) 66.6 93.8 77.6 60.8 67.7 72.8 96.5 83.1 62.1 73.5
DP-RCNN-DeepLab* (R101) 68.0 94.1 80.0 61.9 69.4 74.3 97.1 85.5 63.8 75.0

Table 2: Performance on DensePose-COCO, with IUV (top) and CSE (bottom) training (GPSm
scores, minival). First block: published SOTA DensePose methods, second block: our optimized
architectures + IUV training, third block: our optimized architectures + CSE training. All CSE models
are trained with loss Lσ (eq. 4), LBO size M = 256, embedding size D = 16.

LBO basis, M loss L loss Lσ
32 62.9 63.2
64 64.1 63.9

128 65.2 65.4
256 65.6 66.1
512 65.6 65.9

1024 65.7 65.9

embedding, D loss L loss Lσ
2 38.3 46.4
4 60.0 64.7
8 60.2 65.6

16 65.4 66.1
32 65.6 66.0
64 65.1 66.1

training training mode
data, % IUV loss L loss Lσ

1 18.9 7.2 17.8
5 36.6 26.5 31.4

10 42.2 36.3 39.3
50 58.0 56.3 58.5

100 65.3 65.4 66.1

Table 3: Hyperparameter search and performance in low data regimes (AP, DensePose-
COCO, minival): (left) LBO basis size, M (D = 16), (center) embedding size, D (M = 256),
(right) comparison of IUV and CSE training in small data regimes. DP-RCNN* (R50) predictor.

5 Experiments

Architectures. Our networks are implemented in PyTorch within the Detectron2 [54] framework.
The training is performed on 8 GPUs for 130k iterations on DensePose-COCO (standard s1x sched-
ule [54]) and 5k iterations on DensePose-Chimps and DensePose-LVIS. The code, trained models
and the dataset will be made publicly available to ensure reproducibility.

Prior to benchmarking the CSE setup, we carefully optimized all core architectures for dense pose
estimation and introduced the following changes (similarly to [56, 20]): (1) single channel instance
mask prediction as a replacement for the coarse segmentation of [17]; (2) optimized weights for
(i, u, v) components; (3) DeepLab head and Panoptic FPN (similarly to [43]). The experimental
results are reported following the updated protocol based on GPSm scores [54]. More details on the
network architectures and training hyperparameters are given in the supplementary material.

Comparison of CSE vs IUV training. The comparison of the state-of-the-art methods for dense
pose estimation and our optimized architectures for both IUV and CSE training is provided in Table 2.
The CSE-trained models perform better or on par with their IUV-trained counterparts, while produc-
ing a more compact representation (D = 16 vs D = 75) and requiring only simplified supervision
(single vertex indices vs (i, u, v) annotations).

Influence of hyperparameters. In Table 3 we investigate the CSE network sensitivity to the size
of the LBO basis, M (left), and the output embedding, D (right), given training losses L or Lσ . The
value M = 256 represents the tradeoff between mapping’s smoothness and its fidelity. It does not
seem beneficial to increase the embedding size beyond D = 16, so we adapt this value for the rest
of the experiments. The smoothed loss Lσ yields better performance in a low dimensional setting.

Low data regime. Prior to proceeding with the multi-class experiments on animal classes, we
investigate changes in models performance as a function of the amount of ground truth annotations
by training on subsets of the DensePose-COCO dataset. As shown in Table 3 on the right, Lσ-based
training scales down more gracefully and is significantly more robust than L.

7

model Schimp Ssmpl

human model – 2.0
loss L 8.5 3.3
loss Lσ 21.1 3.2

+ pretrain Φ 36.7 34.5
+ align E 37.2 35.7

Table 4: Performance on the DensePose-Chimps dataset with CSE training (AP, GPSm scores,
measured on both chimp and SMPL meshes wrt the GT mapping Schimp → Ssmpl from [43]).

model cat dog bear sheep cow horse zebra giraffe elephant mean

single class + L 5.5 4.7 1.8 0.9 2.8 4.5 12.5 11.4 19.4 7.05
single class + Lσ 20.2 16.4 10.8 14.2 22.5 24.3 23.9 27.1 26.4 20.6

jo
in

tt
ra

in
in

g multiclass + Lσ 20.2 18.3 19.3 25.4 22.4 26.3 33.2 30.9 29.9 25.0

class agnostic + L 8.7 6.6 4.1 8.2 6.4 7.3 19.2 15.5 9.2 9.5
class agnostic + Lσ 20.5 18.3 20.1 25.9 24.5 25.7 34.5 30.5 27.1 25.2

+ pretrain Φ 28.0 28.3 22.0 31.8 36.5 32.7 43.1 41.2 34.9 33.1
+ align E 30.9 29.4 25.1 35.3 36.5 34.3 46.0 38.3 39.6 35.0

Table 5: Performance on the DensePose-LVIS dataset with CSE training (AP, GPSm scores).

dog
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

sheep
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

zebra
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

bear
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

giraffe
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

elephant
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

horse
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

cat
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 4: Qualitative results on the DensePose-LVIS dataset (single predictor for all classes).

Multi-surface training. The results on DensePose-Chimps and DensePose-LVIS datasets are re-
ported in Tables 4 and 5 (DP-RCNN* (R50), M = 256, D = 16). In both cases, training from
scratch results in poor performance, especially in a single class setting. Initializing the predictor Φ
with the human class trained weights together with the alignment of mesh-specific vertex embed-
dings (as described in 3.3) gives a significant boost. Interestingly, class agnostic training by mapping
all class embeddings to the shared space turns out to be more effective than having a separate set of
output planes for each category (the latter is denoted as multiclass in Table 5). Quantitative results
produced by the best predictor are shown in Figure 4.

Conclusion. In this work, we have made an important step towards designing universal networks
for learning dense correspondences within and across different object categories (animals). We
have demonstrated that training joint predictors in the image space with simultaneous alignment of
canonical surfaces in 3D results in an efficient transfer of knowledge between different classes even
when the amount of ground truth annotations is severely limited.

8

Broader impact

In our paper, we help improve the ability of machines to understand the pose of articulated objects
such as humans in images. In particular, we make the process of learning new object categories
much more efficient.

An application of our method is the observation of the human body. This may come with some
concerns on possible negative uses of the technology. However, we should note that our approach
cannot be considered biometrics, because from pose alone, even if dense, it is not possible to as-
certain the identity of an individual (in particular, we do not perform 3D reconstruction, nor we
reconstruct facial features). This mitigates the potential risk when our method is applied to humans.

We believe that our work has significant opportunities for a positive impact by opening up the possi-
bility that machines could ultimately understand the pose of thousands of animal classes. In addition
to numerous applications in VR, AR, marketing and the like, such a technology can benefit animal-
human-machine interaction (e.g. in aid of the visually impaired), can be used to better safeguard
animals on the Internet (e.g. by detecting animal abuse), and, perhaps most importantly, can allow
conservationists and other researchers to observe animals in the wild at an unprecedented scale,
automatically analysing their motion and activities, and thus collecting information on their num-
ber, state of health, and other statistics. Thus, while we acknowledge that this technology may find
negative uses (as almost any technology does), we believe that the positives far outweigh them.

References
[1] Yonathan Aflalo, Anastasia Dubrovina, and Ron Kimmel. Spectral Generalized Multi-

dimensional Scaling. International Journal of Computer Vision, 118(3):380–392, 2016.

[2] Mykhaylo Andriluka, Umar Iqbal, Anton Milan, Eldar Insafutdinov, Leonid Pishchulin, Juer-
gen Gall, and Bernt Schiele. PoseTrack: A Benchmark for Human Pose Estimation and Track-
ing. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 5167–
5176, 2018.

[3] Mykhaylo Andriluka, Leonid Pishchulin, Peter V. Gehler, and Bernt Schiele. 2D Human Pose
Estimation: New Benchmark and State of the Art Analysis. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 3686–3693, 2014.

[4] Mathieu Aubry, Ulrich Schlickewei, and Daniel Cremers. The wave kernel signature: A quan-
tum mechanical approach to shape analysis. In IEEE International Conference on Computer
Vision Workshops (ICCV Workshops), pages 1626–1633, 2011.

[5] Miguel Ángel Bautista, Artsiom Sanakoyeu, Ekaterina Tikhoncheva, and Björn Ommer.
CliqueCNN: Deep Unsupervised Examplar Learning. In Advances in Neural Information Pro-
cessing Systems (NIPS), pages 3846–3854, 2016.

[6] Benjamin Biggs, Thomas Roddick, Andrew Fitzgibbon, and Roberto Cipolla. Creatures Great
and SMAL: Recovering the Shape and Motion of Animals from Video. In Asian Conference
on Computer Vision (ACCV), pages 3–19, 2018.

[7] Biagio Brattoli, Uta Büchler, Anna-Sophia Wahl, Martin E. Schwab, and Björn Ommer. LSTM
Self-Supervision for Detailed Behavior Analysis. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3747–3756, 2017.

[8] Alexander M. Bronstein, Michael M. Bronstein, Leonidas J. Guibas, and Maks Ovsjanikov.
Shape google: Geometric words and expressions for invariant shape retrieval. ACM Transac-
tions on Graphics (TOG), 30(1):1–20, 2011.

[9] Alexander M. Bronstein, Michael M. Bronstein, and Ron Kimmel. Generalized multidimen-
sional scaling: a framework for isometry-invariant partial surface matching. Proceedings of
the National Academy of Sciences (PNAS), 103(5):1168–1172, 2006.

[10] Alexander M. Bronstein, Michael M. Bronstein, Ron Kimmel, Mona Mahmoudi, and
Guillermo Sapiro. A Gromov-Hausdorff framework with Diffusion Geometry for

9

Topologically-Robust Non-rigid Shape Matching. International Journal of Computer Vision,
89(2–3):266–286, 2010.

[11] Michael M. Bronstein and Iasonas Kokkinos. Scale-invariant heat kernel signatures for non-
rigid shape recognition. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1704 – 1711, 2010.

[12] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Realtime Multi-person 2D Pose
Estimation Using Part Affinity Fields. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1302–1310, 2017.

[13] Wenzheng Chen, Huan Ling, Jun Gao, Edward J. Smith, Jaakko Lehtinen, Alec Jacobson,
and Sanja Fidler. Learning to Predict 3D Objects with an Interpolation-based Differentiable
Renderer. In Advances in Neural Information Processing Systems (NeurIPS), pages 9605–
9616, 2019.

[14] Ronald R. Coifman and Stéphane Lafon. Diffusion maps. Applied and Computational Har-
monic Analysis, 21(1):5–30, 2006.

[15] Asi Elad (Elbaz) and Ron Kimmel. On Bending Invariant Signatures for Surfaces. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 25(10):1285–1295, 2003.

[16] Danielle Ezuz and Mirela Ben-Chen. Deblurring and Denoising of Maps between Shapes.
Computer Graphics Forum, 36(5):165–174, 2017.

[17] Rıza Alp Güler, Natalia Neverova, and Iasonas Kokkinos. DensePose: Dense Human Pose
Estimation in the Wild. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 7297–7306, 2018.

[18] Riza Alp Güler, Natalia Neverova, and Iasonas Kokkinos. DensePose: Dense human pose
estimation in the wild. In Proc. CVPR, 2018.

[19] Semih Günel, Helge Rhodin, Daniel Morales, João Campagnolo, Pavan Ramdya, and Pascal
Fua. DeepFly3D, a deep learning-based approach for 3D limb and appendage tracking in
tethered, adult Drosophila. eLife, 2019.

[20] Yuyu Guo, Lianli Gao, Jingkuan Song, Peng Wang, Wuyuan Xie, and Heng Tao Shen. Adap-
tive Multi-Path Aggregation for Human DensePose Estimation in the Wild. In ACM Interna-
tional Conference on Multimedia, pages 356–364, 2019.

[21] Agrim Gupta, Piotr Dollár, and Ross Girshick. LVIS: A Dataset for Large Vocabulary Instance
Segmentation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 5356–5364, 2019.

[22] Tomas Jakab, Ankush Gupta, Hakan Bilen, and Andrea Vedaldi. Unsupervised Learning of
Object Landmarks through Conditional Image Generation. In Advances in Neural Information
Processing Systems (NeurIPS), pages 4020–4031, 2018.

[23] Sam Johnson and Mark Everingham. Clustered Pose and Nonlinear Appearance Models for
Human Pose Estimation. In British Machine Vision Conference (BMVC), pages 1–11, 2010.

[24] Sam Johnson and Mark Everingham. Learning effective human pose estimation from inaccu-
rate annotation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 1465–1472, 2011.

[25] Angjoo Kanazawa, David W. Jacobs, and Manmohan Chandraker. WarpNet: Weakly Super-
vised Matching for Single-View Reconstruction. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3253–3261, 2016.

[26] Angjoo Kanazawa, Shubham Tulsiani, Alexei A. Efros, and Jitendra Malik. Learning category-
specific mesh reconstruction from image collections. In European Conference on Computer
Vision (ECCV), pages 386–402, 2018.

10

[27] Artiom Kovnatsky, Michael M. Bronstein, Xavier Bresson, and Pierre Vandergheynst. Func-
tional correspondence by matrix completion. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 905–914, 2015.

[28] Nilesh Kulkarni, Abhinav Gupta, David Fouhey, and Shubham Tulsiani. Articulation-aware
Canonical Surface Mapping. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2020.

[29] Nilesh Kulkarni, Shubham Tulsiani, and Abhinav Gupta. Canonical Surface Mapping via
Geometric Cycle Consistency. In International Conference on Computer Vision (ICCV), pages
2202–2211, 2019.

[30] Shuyuan Li, Jianguo Li, Weiyao Lin, and Hanlin Tang. Amur tiger re-identification in the wild.
arXiv e-prints arXiv:1906.05586, 2019.

[31] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C. Lawrence Zitnick. Microsoft COCO: Common Objects in Context. In
European Conference on Computer Vision (ECCV), pages 740–755, 2014.

[32] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J.
Black. SMPL: A skinned multi-person linear model. ACM Transactions on Graphics (TOG),
34(6):248, 2015.

[33] Dominik Lorenz, Leonard Bereska, Timo Milbich, and Björn Ommer. Unsupervised part-
based disentangling of object shape and appearance. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 10955–10964, 2019.

[34] Simone Melzi, Jing Ren, Emanuele Rodolà, Abhishek Sharma, Peter Wonka, and Maks Ovs-
janikov. ZoomOut: spectral upsampling for efficient shape correspondence. ACM Transaction
on Graphics, 38(6):155:1–155:14, 2019.

[35] Tanmay Nath, Alexander Mathis, An Chi Chen, Amir Patel, Matthias Bethge, and Macken-
zie Weygandt Mathis. Using DeepLabCut for 3D markerless pose estimation across species
and behaviors. Nature Protocols, 2019.

[36] Natalia Neverova, James Thewlis, Rıza Alp Güler, Iasonas Kokkinos, and Andrea Vedaldi.
Slim DensePose: Thrifty Learning from Sparse Annotations and Motion Cues. IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages 10915–10923, 2019.

[37] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked Hourglass Networks for Human Pose
Estimation. In European Conference on Computer Vision (ECCV), pages 483–499, 2016.

[38] David Novotny, Nikhila Ravi, Benjamin Graham, Natalia Neverova, and Andrea Vedaldi.
C3DPO: Canonical 3D Pose Networks for Non-Rigid Structure From Motion. In International
Conference on Computer Vision (ICCV), pages 7687–7696, 2019.

[39] Maks Ovsjanikov, Mirela Ben-Chen, Justin Solomon, Adrian Butscher, and Leonidas J.
Guibas. Functional maps: a flexible representation of maps between shapes. ACM Trans-
actions on Graphics (TOG), 31(4):1–11, 2012.

[40] Jonathan Pokrass, Alexander M. Bronstein, Michael M. Bronstein, Pablo Sprechmann, and
Guillermo Sapiro. Sparse modeling of intrinsic correspondences. Computer Graphics Forum,
32(2):459–468, 2013.

[41] Maheen Rashid, Xiuye Gu, and Yong Jae Lee. Interspecies knowledge transfer for facial
keypoint detection. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 6894–6903, 2017.

[42] Raif M. Rustamov. Laplace-Beltrami eigenfunctions for deformation invariant shape represen-
tation. In Symposium on Geometry Processing, pages 225–233, 2007.

[43] Artsiom Sanakoyeu, Miguel Ángel Bautista, and Björn Ommer. Deep unsupervised learning
of visual similarities. Pattern Recognition, 78:331–343, 2018.

11

[44] Artsiom Sanakoyeu, Vasil Khalidov, Maureen S. McCarthy, Andrea Vedaldi, and Natalia
Neverova. Transferring Dense Pose to Proximal Animal Classes. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2020.

[45] Saurabh Singh, Derek Hoiem, and David A. Forsyth. Learning to Localize Little Landmarks.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 260–269,
2016.

[46] Josef Sivic and Andrew Zisserman. Video Google: A Text Retrieval Approach to Object
Matching in Videos. In International Conference on Computer Vision (ICCV), pages 1470–
1477, 2003.

[47] Jian Sun, Maks Ovsjanikov, and Leonidas J. Guibas. A Concise and Provably Informative
Multi-Scale Signature Based on Heat Diffusion. Computer Graphics Forum, 28(5):1383–1392,
2009.

[48] James Thewlis, Samuel Albanie, Hakan Bilen, and Andrea Vedaldi. Unsupervised learning of
landmarks by descriptor vector exchange. ICCV, 2019.

[49] James Thewlis, Hakan Bilen, and Andrea Vedaldi. Unsupervised Learning of Object Land-
marks by Factorized Spatial Embeddings. In International Conference on Computer Vision
(ICCV), pages 3229–3238, 2017.

[50] James Thewlis, Hakan Bilen, and Andrea Vedaldi. Unsupervised object learning from dense
invariant image labelling. In Advances in Neural Information Processing Systems (NIPS),
pages 844–855, 2017.

[51] Shubham Tulsiani, João Carreira, and Jitendra Malik. Pose Induction for Novel Object Cate-
gories. In IEEE International Conference on Computer Vision (ICCV), pages 64–72, 2015.

[52] Shih-En Wei, Varun Ramakrishna, Takeo Kanade, and Yaser Sheikh. Convolutional Pose Ma-
chines. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
4724–4732, 2016.

[53] Peter Welinder, Steve Branson, Takeshi Mita, Catherine Wah, Florian Schroff, Serge Belongie,
and P. Perona. Caltech-UCSD Birds 200. Technical Report CNS-TR-2010-001, California
Institute of Technology, 2010.

[54] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detectron2.
https://github.com/facebookresearch/detectron2, 2019.

[55] Heng Yang, Renqiao Zhang, and Peter Robinson. Human and sheep facial landmarks localisa-
tion by triplet interpolated features. In IEEE Winter Conference on Applications of Computer
Vision (WACV), pages 1–8, 2015.

[56] Lu Yang, Qing Song, Zhihui Wang, and Ming Jiang. Parsing R-CNN for Instance-Level Hu-
man Analysis. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 364–373, 2019.

[57] Ning Zhang, Jeff Donahue, Ross B. Girshick, and Trevor Darrell. Part-Based R-CNNs for Fine-
Grained Category Detection. In European Conference on Computer Vision (ECCV), pages
834–849, 2014.

[58] Weiyu Zhang, Menglong Zhu, and Konstantinos G. Derpanis. From Actemes to Action: A
Strongly-Supervised Representation for Detailed Action Understanding. International Con-
ference on Computer Vision (ICCV), pages 2248–2255, 2013.

[59] Yuting Zhang, Yijie Guo, Yixin Jin, Yijun Luo, Zhiyuan He, and Honglak Lee. Unsuper-
vised Discovery of Object Landmarks as Structural Representations. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 2694–2703, 2018.

[60] Silvia Zuffi, Angjoo Kanazawa, Tanya Y. Berger-Wolf, and Michael J. Black. Three-D Sa-
fari: Learning to Estimate Zebra Pose, Shape, and Texture from Images "In the Wild". In
International Conference on Computer Vision (ICCV), pages 5358–5367, 2019.

12

https://github.com/facebookresearch/detectron2

[61] Silvia Zuffi, Angjoo Kanazawa, David W. Jacobs, and Michael J. Black. 3D Menagerie: Mod-
eling the 3D Shape and Pose of Animals. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5524–5532, 2017.

[62] Silvia Zuffi, Angjoo Kanazawa, David W. Jacobs, and Michael J. Black:. Lions and Tigers
and Bears: Capturing Non-Rigid, 3D, Articulated Shape from Images. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 3955–3963, 2018.

13

A Appendix A

A.1 Discrete Laplace-Beltrami operator

Laplace-Beltrami operator (W,A). In order to construct the discrete Laplace-Beltrami Operator
(LBO), and with reference to the notation introduced in the main manuscript, we assume that the
points Xk are the vertices of a simplicial mesh, i.e. the union S̄ = ∪f∈F f of a finite set F of
triangular faces f , approximating the 3D surface S. With slight abuse of notation, we denote each
face f = (X1, X2, X3) as a triplet of vertices oriented in clockwise order with respect to the normal
Nf of the face. If we assume that the function r is continuous and linear within each face, then the
samples r fully specify the function. Let b1 = X3 − X2, b2 = X1 − X3 and b3 = X2 − X1, be
the edge vectors opposite to each vertex of the triangle f and let Af be its area. The gradient of r,
which is constant on each face f , is given by:

(∇r)f =
1

2Af

3∑
i=1

(Nf × bi)rfi = Gfrf , rf =

[
rf1
rf2
rf3

]
Af =

1

2
|b1× b2|, Nf =

1

2Af
(b1× b2).

(5)
The Dirichlet energy of the function r is the integral of the squared gradient norm:

∫
S̄
‖∇r‖2 dS =∑

f∈F Af‖(∇r)f‖2 =
∑
f∈F r>f Wfrf , where Af is the area of face f and Wf = AfG

>
f Gf . By

summing Lf over the faces, we obtain the overall LBO operator W ∈ RK×K mapping r to the total
Dirichlet energy r>Wr (since this energy is non-negative, W is positive semi-definite). We also
need the diagonal matrixA of lumped areas, withAkk being a third of the total areas of the triangles
incident on vertex Xk. 1

Gradient operator Gf . We can verify the expression eq. (5) for the gradient as follows. The
gradient dotted with an edge vector bi must give the function change along that edge. For example,
for edge b1 we have:

〈b1, (∇r)f 〉 =

3∑
i=1

〈b1, Nf × bi〉
2Af

rfi =
〈Nf , b2 × b1〉

2Af
rf2 +

〈Nf , b3 × b1〉
2Af

rf3 = rf3 − rf2 .

We can write matrix Gf in eq. (5) much more compactly as:

Gf =
1

2Af
N̂fBf , Bf = Bf 1̂

>, Vf = [X1 X2 X3] , â =

[
0 −a3 a2

a3 0 −a1

−a2 a1 0

]
,

Here ·̂ is the hat operator, such that a×b = âb, and and 1 = (1, 1, 1), so thatBf = [b1 b2 b3]. By
summing Gf over the faces f , we obtain an discrete operator G ∈ R3|F |×K mapping the function r
to the gradient in each face.

Cotangent weight matrix W . Given the expression for Gf , we can find a compact expression fo
Wf in the LBO:

Wf = AfG
>
f Gf =

1

4Af
B>f Bf .

Note that B>f N̂
>
f N̂fBf = B>f Bf because bi ⊥ Nf and thus:

〈Nf × bi, Nf × bj〉 = 〈Nf , Nf 〉〈bi, bj〉 − 〈Nf , bj〉〈Nf , bi〉 = 〈bi, bj〉.
Wf matches the usual cotangent discretization of the Laplace-Beltrami operator: Bf contains dot
products of edges, 2Af the norm of their cross products, and the ratio of these two are cotangents.

Divergence operator D. Finally, we sometimes require a divergence operator. For this, let Xf ∈
R3 a vector defined on each face. In order to compute the divergence at a vertex X1, we find
the contour integral of Xf along the boundary of the triangle fan centered at X1. Thus let f =
(X1, X2, X3) be a face belonging to this fan and b1, b2, b3 be the corresponding edge vectors as
before. The contribution of this triangle to the contour integral around X1 is:

DvXf = |b2| · 〈n,Xf 〉, n|b2| = b2 ×Nf =
1

2Af
b2 × (b3 × b1) = b3

〈b2, b1〉
2Af

− b1
〈b2, b3〉

2Af
1This is a required normalization factor to account for the different areas of the triangles w.r.t. the continuous

surface being approximated.

14

A.2 Spectra interpolation of correspondences (ZoomOut)

Assume that we have complete correspondences for the mesh S′, in the sense that k′j = j,
j = 1, . . . ,K ′. We can encode those as a permutation matrix Π such that Πij = δki=j , map-
ping functions r on S to function r′ = Πr on S′ (this is analogous to backward warping). This
can be rewritten in ‘Fourier’ space as r′ = U ′r̂′ = U ′C r̂ = Πr = ΠU r̂, which gives us the con-
straint [16] U ′C = ΠU . We can use this equation to find C given Π, or to find Π given C. Finding
Π is done in a greedy manner, searching, for each row of U ′C, the best matching row in U (in L2

distance). Finding C is done by minimizing ‖U ′C −ΠU‖2A′ , which results in C = (U ′)>A′ΠU .

In practice, we found it beneficial to add three more standard constraints when resolving for C.
First, let Γ ∈ {0, 1}K×K be the symmetry matrix mapping each vertex of mesh S to its symmetric
counterpart (this is trivially determined for our canonical models), and let Γ′ be the same for S′.
Then a correct correspondence Π between meshes must preserve symmetry, in the sense that Γ′Π =

ΠΓ; this constraint can be rewritten in Fourier space as Γ̂′C = CΓ̂, where Γ̂ = UΓU†. For
isometric meshes, the exact same reasoning applies to the LBO L = A−1W because the LBO is an
intrinsic property of the surface (i.e. invariant to isometry). Our meshes are not isometric, but, after
resizing them to have the same total area, we can use the constraint L′Π ≈ ΠL in a soft manner for
regularization; it is easy to show that this reduces to Λ′C ≈ CΛ where Λ is the matrix of eigenvalues
of the LBO. In practices, this encourages C to be roughly diagonal. Finally, we use the method just
described twice, to estimate jointly a mapping C from mesh S to S′, and another C ′ going in the
other direction, and enforce CC ′ ≈ I (cycle consistency).

B Appendix B

B.1 Annotation process

We are following an annotation protocol similar to the one described in the original DensePose
work [18]. We start with instance mask annotations provided in the LVIS dataset and crop images
around each instance. We only annotate instances with bounding boxes larger than 75 pixels. We
do not collect annotations for body segmentation: instead, the points are sampled from the whole
foreground region represented by the object mask. The annotators are then shown randomly sampled
points displayed on the image and are asked to click on corresponding points in multiple views
rendered from a 3D model representing the given species. Each worker is asked to annotate 3 points
on a single object instance. The points on the rendered views are mapped directly to vertex indices
of the corresponding model. Each mesh is normalised to have approximately 5k vertices.

B.2 Implementation details

Compared to the original DensePose [17] models, we introduced the following changes:

• single channel mask supervision as a replacement of the 15-way segmentation;
• RoI pooling size for the DensePose task is set to 28× 28;
• a decoder module based on Panoptic FPN, as implemented in [44];
• for the DeepLab models, the head architecture corresponds to [44];
• IUV training, weights of individual loss terms: wmask = 5.0 (body mask), wi = 1.0 (point

body indices), wuv = 0.01 (uv coordinates);
• CSE training, weight on the embedding loss term: we = 0.6.

For the DensePose-COCO dataset, all models are trained with the standard s1x schedule [54] for
130k iterations. On the LVIS and DensePose-Chimps datasets, the models are trained for 5k itera-
tions with the learning rate drop by the factor of 10 after 4000k and 4500k iterations.

For the evaluation purposes all 3D meshes are normalised in size to have the same geodesic distance
between the pair of most distant points as the SMPL model (Pdist.,max = 2.5). For the animal
classes, we do not employ part specific normalisation coefficients, as done in the updated DensePose
evaluation protocol.

The code, the pretrained models and the annotations for the LVIS dataset will be publicly released.

15

	Introduction
	Related work
	Method
	Injecting geometric knowledge via spectral analysis
	Relating different categories
	Cross-species DensePose with functional maps

	Datasets
	Experiments
	Appendix A
	Discrete Laplace-Beltrami operator
	Spectra interpolation of correspondences (ZoomOut)

	Appendix B
	Annotation process
	Implementation details

