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Figure 1: We present a novel deep architecture that contributes Warp-conditioned Ray Embedding (WCR) to reconstruct and

render new views (right) of object categories from one or few input images (middle). Our model is learned automatically from

videos of the objects (left) and works on difficult real data where competitor architectures fail to produce good results.

Abstract

Our goal is to learn a deep network that, given a small

number of images of an object of a given category, recon-

structs it in 3D. While several recent works have obtained

analogous results using synthetic data or assuming the avail-

ability of 2D primitives such as keypoints, we are interested

in working with challenging real data and with no manual an-

notations. We thus focus on learning a model from multiple

views of a large collection of object instances. We contribute

with a new large dataset of object centric videos suitable for

training and benchmarking this class of models. We show

that existing techniques leveraging meshes, voxels, or im-

plicit surfaces, which work well for reconstructing isolated

objects, fail on this challenging data. Finally, we propose

a new neural network design, called warp-conditioned ray

embedding (WCR), which significantly improves reconstruc-

tion while obtaining a detailed implicit representation of

1Work completed during an internship at Facebook AI Research.

the object surface and texture, also compensating for the

noise in the initial SfM reconstruction that bootstrapped the

learning process. Our evaluation demonstrates performance

improvements over several deep monocular reconstruction

baselines on existing benchmarks and on our novel dataset.

For additional material please visit: https://henzler.

github.io/publication/unsupervised_videos/.

1. Introduction

Understanding and reconstructing categories of 3D ob-

jects from 2D images remains an important open challenge in

computer vision. Recently, there has been progress in using

deep learning methods to do so but, due to the difficulty of

the task, these methods still have significant limitations. In

particular, early efforts focused on clean synthetic data such

as ShapeNet [5], further simplifying the problem by assum-

ing the availability of several images of each object instance,
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knowledge of the object masks, object-centric viewpoints,

etc. Methods such as [8, 7, 46, 55, 24] have demonstrated

that, under these restrictive assumptions, it is possible to

obtain high-quality reconstructions, motivating researchers

to look beyond synthetic data.

Other methods have attempted to learn the 3D shape of

object categories given a number of independent views of

real-world objects, such as a collection of images of different

birds. However, in order to simplify the task, most of them

use some form of manual or automatic annotations of the 2D

images. We seek to relax these assumptions, avoiding the

use of manual 2D annotations or a priori constraints on the

reconstructed shapes.

When it comes to high-quality general-purpose recon-

structions, methods such as [36, 31, 33, 39, 65] have demon-

strated that these can be obtained by training a deep neural

network given only multiple views of a scene or object with-

out manual annotations or particular assumptions on the 3D

shape of the scene. Yet, these techniques can only learn a

single object or scene at a time, whereas we are interested

in modelling entire categories of 3D objects with related but

different shapes, textures and reflectances. Nevertheless, the

success of these methods motivates the use of multi-view

supervision for learning collections of 3D objects.

In this paper, our first goal is thus to learn 3D object

categories given as input multiple views of a large collection

of different object instances. To the best of our knowledge,

this is the first paper to conduct such a large-scale study

of reconstruction approaches applied to learning 3D object

categories from real-world 2D image data. Unfortunately,

existing datasets for 3D category understanding are either

small or synthetic. Thus, our first contribution is to introduce

a new dataset of videos collected ‘in the wild’ by Mechanical

Turkers (fig. 3). These videos capture a large number of

object instances from the viewpoint of a moving camera,

with an effect similar to a turntable. Viewpoint changes are

estimated with high accuracy using off-the-shelf Structure

from Motion (SfM) techniques. We collect hundreds of

videos of several different categories.

Our second contribution is to assess current reconstruc-

tion technology on our new ‘in the wild’ data. For example,

since each video provides several views of a single object

with known camera parameters, it is suitable for an appli-

cation of recent methods such as NeRF [36], and we find

that learning individual videos works very well, as expected.

However, we show that a direct application of such models

to several videos of different but related objects is much

harder. In fact, we experiment with related representations

such as voxels and meshes, and find that they also do not

work well if applied naı̈vely to this task. This is true even

though reconstructions are focused on a single object at a

time — thus disregarding the background — suggesting that

these architectures have a difficult time at handling even

relatively mild geometric variability.

Our final contribution is to propose a novel deep neural

network architecture to better learn 3D object categories in

such difficult conditions. We hypothesize that the main chal-

lenge in extending high-quality reconstruction techniques,

that work well for single objects, to object categories is the

difficulty of absorbing the geometric variability that comes

in tackling many different objects together. An obvious

but important source of variability is viewpoint: given only

real images of different objects, it is not obvious how these

should align in 3D space, and a lack of alignment adds to the

variability that the model must cope with. We address this

issue with a novel idea of Warp-Conditioned Ray Embed-

dings (WCR), a new neural rendering approach that is far less

sensitive to inaccurate 3D alignment in the input data. Our

method modifies previous differentiable ray marchers to pool

information at variable locations in input views, conditioned

on the 3D location of reconstructed points.

With this, we are able to train deep neural networks that,

given as input a small number of images of new object in-

stances in a given target category, can reconstruct them in 3D,

including generating high-quality new views of the objects.

Compared to existing state-of-the-art reconstruction tech-

niques, our method achieves better reconstruction quality in

challenging datasets of real-world objects.

2. Related Work

Our work is related to many prior papers that leveraged

deep learning for 3D reconstruction.

Learning synthetic 3D object categories. Early deep

learning methods for 3D reconstruction focused on clean syn-

thetic datasets such as ShapeNet [5]. Fully supervised meth-

ods [7, 12] mapped 2D images to 3D voxel grids. Follow-up

methods proposed several alternatives: [8, 64] predict a point

clouds, Park et al. [44, 1] label each 3D point with its signed

distance to the nearest surface point, [35, 6] predict binary

per-point occupancies, [11, 10] proposed more structured

occupancy functions, and [13, 60] reconstruct meshes from

single views. All aforementioned methods require full su-

pervision in form of images and corresponding 3D CAD

models. In contrast, our method requires only a set of videos

of an object category captured from a moving camera.

Methods that avoid 3D supervision project 3D shapes to

2D images using differentiable rendering, allowing for image

space optimization instead of 3D [46, 63, 56, 24, 22, 54].

Learning 3D object categories in the wild. Early recon-

struction methods for 3D object categories used Non-Rigid

SfM (NR-SfM) applied to 2D keypoint annotations [4, 58, 3].

CMR [23] used NR-SfM and 2D keypoints to initialize the

camera poses on the CUB [59] dataset based on differen-

tiable mesh rendering [26, 32, 6]. The texturing model of

CMR was improved in DIB-R [6].
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Figure 2: Our method takes as input an image and produces per pixel features using a U-Net Φ. We then shoot rays from a

target view and retrieve per-pixel features from one or multiple source images. Once all spatial feature vectors are aggregated

into a single feature vector (see Section 3.3 for more details), we combine them with their harmonic embeddings and pass them

to an MLP yielding per location colors and opacities. Finally, we use differentiable raymarching to produce a rendered image.

Instead of assuming knowledge of pose, [28, 27, 14] as-

sume a deformable 3D template. PlatonicGAN [19] enables

template-free 3D reconstruction via differentiable emission-

absorption raymarching, but requires knowledge of the

camera-pose distribution.

Similarly, [62] does not require pose supervision, but it

has been demonstrated only for limited viewpoint variations.

Li et al. [29] do not assume camera poses as input, but use

the self-supervised semantic features of [21] as a proxy for

2D keypoints as well as further constraints such as symmetry

to help the reconstruction. We avoid such constraints for

the sake of generality. Exploiting the StyleGAN [25] latent

space, Zhang et al. [67] only require very few manual pose

annotations. Our method, furthermore, does not require

keypoint or pose supervision; instead, it recovers scene-

specific camera poses automatically by analyzing camera

motion. [42, 43] canonically align point clouds by only

supervising with relative pose, but only learn a shape model.

Generative models trained in the wild were proposed in

[9, 38]. While these methods can ‘hallucinate’ high-quality

images, they, unlike us, are unable to also perform recon-

struction of the objects given an image as input.

Implicit representation of 3D scenes. NeRF [36] has

raised the interest in neural scene representation due to its

high-quality output, inspired by positional encoding pro-

posed in [57] and differentiable volume rendering from

[19, 55]. NSVF [31] combined NeRF and voxel grids to im-

prove the scalability and expressivity of the model whereas

Yariv et al [65] uses sphere tracing to render signed dis-

tance fields. GRAF [51] extended NeRF to allow learning

category-specific image generators, but do not perform re-

construction, which is our goal. Our method is inspired by

NeRF, however, we learn a model of a whole object category,

rather than a single scene or object.

Recent works, [20, 47, 48, 66, 61] utilize sampled per-

pixel encodings similar to us. [66] averages features over

multiple views and [61] learns to interpolate between views

in an IBR fashion [18, 2] which prevents inpainting unseen

areas. Our method aggregates latent encodings, which allows

for representing unseen areas. Furthermore, we observed

that simply averaging features from significantly different

viewpoints, as done in [66], hurts performance. We thus

propose to aggregate depending on view angles.

3. Method

Overview. The goal of our method is to learn a model

of a 3D object category from a dataset {Vp}Nvideo

p=1 of video

sequences. Each video Vp = (Ipt )0≤t<Tp consists of T p ∈
N color frames I

p
t ∈ R

3×H×W . While we do not use any

manual annotations for the videos, we do pre-process them

using a Structure-from-Motion algorithm (COLMAP [49]).

In this manner, for each video frame I
p
t , we obtain sequence-

specific camera poses g
p
t ∈ SE(3) and the camera instrinsics

K
p
t ∈ R

3×3. We further obtain a segmentation mask m
p
t ∈

R1×H×W of the given category using Mask-RCNN [16].

The model parametrizes the appearance and geometry of

the object in each video with an implicit surface map Ψ:

Ψ : R3 × S
2 ×Z → R

3 × R+ Ψ(x, r, z) = (c, σ),

which labels each 3D scene point x ∈ R
3 and viewing di-

rection r ∈ S
2 with an RGB triplet c(x, r, z) ∈ R

3 and an

occupancy value σ(x, z) ∈ (0, 1] representing the opaque-

ness of the 3D space. Furthermore, the implicit function Ψ is

conditioned on a latent code z ∈ Z that captures the factors

of variation of the object. By changing z we can adjust the

occupancy field to represent shapes of different objects of a

visual category. As described in section 3.3, the design of

the latent space Z is crucial for the success of the method.

While we use video sequences to train the model, at test

time we would like to reconstruct any new object instance

from a small number of images. To this end, we learn an

encoder function

Φ : R3×H×W×Nsrc → Z,

that takes a number of input source images {Isrc
1 , . . . , Isrc

Nsrc
}

of the new instance and produces the latent code z ∈ Z .

4702



Given a known target view (different view than the source

images) we render the implicit surface to form a color image

Î tgt ∈ R
3×H×W and minimize the discrepancy between the

rendered Î tgt and the masked ground truth image I tgt.

In the following, we describe the main building blocks

of our method. The rendering step follows Emission-

Absorption raymarching [34, 19, 37, 54] as detailed in sec-

tion 3.1. Section 3.2 describes the specifics of the surface

function Ψ, and section 3.3 introduces the main technical

contribution — a novel Warp-Conditioned Ray Embedding

that defines the image encoder Φ.

3.1. Implicit surface rendering

In order to render a target image Î tgt, we emmit a ray from

the camera center through each pixel, assigning the color

of ray’s first ‘intersection’ with the surface to the respective

pixel. Formally, let Ω = {0, . . . ,W − 1} × {0, . . . , H − 1}
be an image grid, u ∈ Ω the index of a pixel, and Z ∈ R+

a depth value. Following the ray from the camera center

through u to depth Z ≥ 0 results in the 3D point: x̄(u, Z) =
Z ·K−1[u⊤ 1]⊤, where K ∈ R

3×3 are the camera intrinsics.

The camera’s pose is given by an Euclidean transformation

gtgt ∈ SE(3), where we use the convention that x̄ = gtgt(x)
maps points x expressed in the world reference frame to

points x̄ in camera coordinates.

In order to determine the color of a pixel u ∈ Ω, we

then ‘shoot’ a ray seeking the surface intersection. To do so,

we sample points Xu = (x(u, Zi))
NZ+1
i=0 for depth values

Z0 ≤ · · · ≤ ZNZ
obtaining their colors and occupancies:

(ci, σi) = Ψ(x(u, Zi), r, z), i = 0, . . . , NZ . (1)

The probability of the ray not intersecting the surface in the

interval (Zi+1, Zi] is set to Ti = e−(Zi+1−Zi)σi(x(u,Zi),z)

(transmission probability). Summing over all possible inter-

sections Z0, . . . , Zi, the probability p(Z = Zi|u) of a ray

terminating at depth Zi is thus defined as:

p(Z = Zi|u) =





i−1
∏

j=0

Tj



 (1− Ti) , m̂u = 1−

NZ−1
∏

i=0

Ti,

with the overall probability of intersection m̂u. Given the

distributions of ray-termination probabilities p(Z|u), the ren-

dered color ĉu(Xu, r, z) ∈ R
3 and opacity σ̂u(Xu, z) ∈ R

are defined as an expectation over the outputs of the implicit

function within the range [0, . . . , NZ − 1]:

ĉu =

NZ−1
∑

i=0

p(Z = Zi|u)ci, σ̂u =

NZ−1
∑

i=0

p(Z = Zi|u)σi.

Since we are only interested in rendering the interior of the

object, the colors cu are softly-masked with m̂u leading to

the final target image render Î tgt ∈ R
3×H×W :

Î tgt = I(gtgt, z) = m̂⊙ ĉ. (2)

Note that the reconstruction depends on the target viewpoint

gtgt and the object code z, which is viewpoint independent.

3.2. Neural implicit surface

Next, we detail the implicit surface function Ψ. Sim-

ilar to previous methods [37, 40, 35], we exploit the

representational power of deep neural networks and de-

fine Ψ as a deep multi-layer perceptron (MLP): (c, σ) =
Ψnr(x, r, z). The network Ψnr follows a design simi-

lar to [37]. In particular, the world-coordinates x are

preprocessed with the harmonic encoding γNx
f
(x) =

[sin(x), cos(x), . . . , sin(2N
x
f x), cos(2N

x
f x)] ∈ R

2Nx
f be-

fore being input to the first layer of the MLP. In order

to enable modelling of viewpoint dependent color variations,

we further use the harmonic encoding of the target ray direc-

tion γNr
f
(rtgt(x)) ∈ R

2Nr
f as input (see Figure 2).

3.3. Warpconditioned ray embedding

An important component of our method is the design of

the latent code z. A naı̈ve solution is to first map a source

image Isrc to a D-dimensional vector zCNN = ΦCNN(I
src) ∈

R
D with a deep convolutional neural network ΦCNN, fol-

lowed by appending a copy of zCNN to each positional em-

bedding γ(x) to form an input to the neural occupancy func-

tion Ψnr. This approach, successfully utilized in [54, 32]

for synthetic datasets where the training shapes are approxi-

mately rigidly aligned, is however insufficient when facing

more challenging in-the-wild scenarios.

To show why there is an issue here, recall that our inputs

are videos Vp of different object instances, each consisting

of a sequence (Ipt )0≤t<Tp of video frames, together with

viewpoint transformations g
p
t ∈ SE(3) recovered by SfM.

Crucially, due to the global coordinate frame and scaling

ambiguity of the SfM reconstructions [15], there is no re-

lationship between the camera positions gp and gq recon-

structed for two different videos p 6= q. Even two iden-

tical videos Vp = Vq, reconstructed using SfM from two

different random initializations, will result in two differ-

ent sets of cameras (gpt )0≤t<Tp , (gqt = g⋆g
p
t )0≤t<Tp , re-

lated by an unknown similarity transformation g⋆ ∈ S(3).
Since the frames I

p
t = I

q
t are identical, the reconstruc-

tion network ΦCNN must assign to them identical codes:

zCNN,t = z
p
CNN,t = ΦCNN(I

p
t ) = ΦCNN(I

q
t ) = z

q
CNN,t. Plug-

ging this in eq. (2), means that two identical frames are recon-

structed from the same code zCNN,t but two different view-

points g
p
t 6= g

q
t : Î

p
t = I(gpt , zCNN,t) = I(gqt , zCNN,t) = Î

q
t .

While of course we do not work with identical copies of the

same videos, this extreme case demonstrates a fundamental

issue with the naı̈ve model, where different object instances

must be reconstructed with respect to unrelated viewpoints.

We can partially tackle this issue by using a variant of [41]

to approximately align the viewpoint of different video se-

quences before training (see supplemental).
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Next, we introduce a more fundamental change to the

model that also helps addressing this issue. The idea is to

change the implicit surface (1)

ΨWCR(x, z(x)), (3)

such that the code z is a function of the queried ray point

x in world coordinates. Given a source image Isrc
t with

viewpoint gt, the projection of this point in the image is:

ut(x) = πt(x) = π(Kgtx) where π denotes the perspective

projection operator R3 → Ω. In particular, if x is also a point

on the surface of the object, then ut(x) is the image of the

corresponding point in the source view Isrc
t .

More specifically, we task a convolutional neural net-

work Φ to map the image Isrc
t to a feature field Φ(Isrc

t ) ∈
R

D×H×W (see supplementary for details). In this way, for

each pixel ut in the source view, we obtain a corresponding

embedding vector Φ(It)[ut(x)] (using differentiable bilinear

interpolation [·]):

zt(x) = Φ(It)[πt(x)] ∈ R
D, (4)

and call it Warp-Conditioned Ray Embedding (WCR).

Intuitively, as shown in fig. 2, by using eqs. (3) and (4)

during ray marching, the implicit surface network ΨWCR

can pool information from relevant 2D locations ut in the

source view Isrc
t . Importantly, this occurs in a manner which

is invariant to the global viewpoint ambiguity. In fact, if the

geometry is now changed by the application of an arbitrary

similarity transformation g⋆, then the 3D point changes as

x
′ = g⋆x, but the viewpoint also changes as g′t = gt(g

⋆)−1,

so that g′tx
′ = g′t(g

⋆)−1g⋆x = gtx and the encoding of the

points x and x
′ is the same: Φ(It)[πt(x)] = Φ(It)[π

′
t(x

′)]
Finally, note that the network eq. (3) combines two sources

of information: (1) codes z(x) that capture the appearance

of each point in a manner which is invariant from the global

coordinate transforms; and (2) the absolute location of the

3D point x (internally encoded by using position-sensitive

coding γ(x)). The combination of 1) and 2) above allows

to resolve misalignments by localizing the implicit surface

equivariantly with changes of the global coordinates.

Multi-view aggregation. Having described WCR for a

single source image we now extend to the more common

case with multiple source images. For a set of source views

{Isrc
t }Nsrc

t=1 with their warp-conditioned embeddings zsrc
t (x),

source rays rsrc
t (x), and the target ray r

tgt(x) (see Figure 2),

we calculate the aggregate WCR z(x, {Isrc
t }):

z(x, {Isrc
t }) = cat

(

z
µ(x, {Isrc

t }), zσ(x, {Isrc
t }), zCNN({I

src
t })

)

,

as a concatenation (cat) of the angle-weighted mean and

variance embedding z
µ ∈ R

D and z
σ ∈ R+ respectively,

and a plain average zCNN = N−1
src

∑

t zCNN,t over global

source embeddings zCNN,t.

The mean z
µ(x, {Isrc

t }) =
∑Nsrc

t=1 wt(x)z
src
t (x) is a

weighted average of the source embeddings z
src
t (x) with

the weight wt(x) defined as

wt(x) = W (x)
−1

(1 + r
src
t (x) · rtgt(x)).

W (x) =
∑Nsrc

t=1 wt(x) is a normalization constant ensuring

the weights integrate to 1. This gives more weight to the

source-view features that are imaged from a viewpoint which

is closer to the target view. The variance embedding z
σ ∈

R+ is defined analogously as an average over dimension-

specific wt(x)-weighted standard deviations of the source

embedding set {zsrc
t (x)}Nsrc

t=1.

3.4. Overall learning objective

For training, we optimize the loss L = λLmask + Lrgb

where λ = 0.05. Lmask is defined as the binary cross-entropy

between the rendered opacity and ground truth mask. For the

appearance loss Lrgb we use the mean-squared error between

the masked target view and our rendering.

Figure 3: In order to study learning 3D object categories

in the wild, we crowd-sourced a large collection of object-

centric videos from Amazon Mechanical Turk. The top row

shows frames from three example videos, the bottom two

rows show SfM reconstructions of the videos together with

tracked cameras.

4. Experiments

We discuss implementation details, data and evaluation

protocols (section 4.1) and assess our method and baselines

on the tasks of novel-view synthesis and depth prediction.

Implementation details. As noted in section 3.3, al-

though WCR is in principle capable of dealing with the

scene misalignments by itself, we found it beneficial to ap-

proximately “synchronize” the viewpoints of different videos

in pre-processing, using a modified version of the method

from [41]. First, we use the scene point clouds from SfM to

register translation and scale by centering (subtracting the

mean) and dividing by average per-dimension variance, re-

sulting in adjusted viewpoints ḡt. We then proceed with train-

ing the rotation part of the viewpoint factorization branch of

the VpDR network from [41], in order to align the rotational

components of the viewpoints.
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AMT Freiburg Cars

Train-test Test Train-test Test

Method ℓ
RGB
1 ℓ

VGG
1 IoU ℓ

Depth
1

ℓ
RGB
1 ℓ

VGG
1 IoU ℓ

Depth
1

ℓ
RGB
1 ℓ

VGG
1 IoU ℓ

Depth
1

ℓ
RGB
1 ℓ

VGG
1 IoU ℓ

Depth
1

Mesh 0.10 1.17 0.60 5.13 0.10 1.16 0.60 5.09 0.14 2.03 0.60 1.19 0.17 2.17 0.56 1.06

Voxel 0.06 1.05 0.78 2.14 0.09 1.13 0.66 3.07 0.05 1.58 0.89 0.59 0.16 2.05 0.51 2.18

Voxel+MLP 0.06 1.04 0.78 1.95 0.09 1.13 0.65 2.87 0.05 1.47 0.88 0.48 0.16 2.06 0.54 1.97

MLP 0.04 0.90 0.87 1.38 0.09 1.13 0.65 3.59 0.04 1.39 0.87 0.59 0.15 2.03 0.47 2.52

Ours 0.03 0.86 0.88 1.31 0.05 0.93 0.83 1.90 0.04 1.39 0.90 0.48 0.12 1.89 0.62 1.60

Table 1: Novel-view synthesis on AMT Objects and Freiburg Cars. Each row evaluates either a baseline or our method.

Results are reported for two perceptual metrics ℓRGB
1 , ℓVGG

1 , depth error ℓ
Depth
1 , and intersection-over-union (IoU). For training

we randomly selected between 1 and 7 source images. For testing we separately calculated the error metrics for 1, 3, 5 and 7

source images respectively and provide the average among those. For a more detailed evaluation we refer to the supplemental.

Lower is better for ℓRGB
1 , ℓVGG

1 , and ℓ
Depth
1 , whereas higher is better for IoU. The best result is bolded.

4.1. AMT Objects and other benchmarks

One of our main contributions is to introduce the AMT

Objects dataset, a large collection of object-centric videos

that we collected (fig. 3) using Amazon Mechanical Turk.

The dataset contains 7 object categories from the MS COCO

classes [30]: apple, sandwich, orange, donut, banana, carrot

and hydrant. For each class, we ask Turkers to collect a video

by looking ‘around’ a class instance, resulting in a turntable

video. For reconstruction, we uniformly sampled 100 frames

from each video, discarding any video where COLMAP pre-

processing was unsuccessful. The dataset contains 169-457

videos per class. For each class, we randomly split videos

into training and testing videos in an 8:1 ratio.

We also consider the Freiburg Cars [52], consisting of

45 training and 5 testing videos of various parked cars.

For every video, we define three disjoint sets of frames

on which we either train or evaluate: (1) train-train, (2)

train-test and (3) test. For each training video, we form

the train-test set by randomly selecting 16 frames and a

disjoint train-train set containing the complement of train-

test. While the train-train frames are utilized for training,

the train-test frames are never seen during training and only

serve for evaluation. The evaluation on the test set is the most

challenging since it is conducted with views of previously

unseen object instances.

Evaluation protocol. Recall that, at test time, our network

takes as input a certain number of source images Isrc and

reconstructs a target image Î tgt seen from a different view-

point. We assess the view synthesis and depth reconstruction

quality of this prediction. To this end, for each object cat-

egory, we randomly extract a batch of 8 different images

from the train-test and test respectively. To increase view

variability we repeat this process 5 times for every object.

For each batch one of the images is picked as a target image

I tgt and from the remaining images we individually select

1,3,5,7 images and perform the forward pass to generate Î tgt

for each selection.

In order to assess the quality of view synthesis, we calcu-

late the ℓRGB
1 error, between the target and predicted image.

We also use the ℓVGG
1 perceptual metric, which computes

the ℓ1 distance between the two images encoded by means

of the VGG-19 network [53] pretrained on ImageNet. For

depth reconstruction, we compute the ℓ
Depth
1 distance be-

tween ground truth depth map (obtained from COLMAP

SfM) and the predicted one in the target view. Finally we

report Intersection-over-Union (IoU) between the predicted

object mask and the object mask obtained by Mask-RCNN

in the target view.

4.2. Baselines

In this section we detail the baselines we compare with.

The first is MLP, corresponding to a naı̈ve version of the

latent global encoding zCNN already discussed in section 3.3.

Here, the N src source images {Isrct }N
src

t=1 are first indepen-

dently mapped to embedding vectors {zt ∈ R
256}N

src

t=1 by a

ResNet50 [17] encoder and subsequently averaged to form

an encoding of the object zCNN = 1
N src

∑N src

t=1 zt. A copy

of zCNN is then concatenated to each positional embedding

γ(x) of each target ray point x. MLP renders with the EA

ray marcher (section 3.1).

The second baseline is Voxel, which closely resem-

bles [55]. This uses the same encoding scheme as MLP,

but differs by the fact that the object is represented by a

voxel grid. Specifically, zCNN is decoded with a series of 3D

convolution-transpose layers to a 1283 voxel grid containing

RGB and opacity values. Voxel also renders with EA.

Next, Voxel+MLP is inspired by Neural Sparse Voxel

fields [31] and marries NeRF [36] with voxel grids. As in

Voxel, zCNN is first 3D-deconvolved into a 1283 volume of

32-dimensional features. Each target view ray point x is then

described with a positional embedding γ(x), and a latent

feature zg(x) ∈ R
32 trilinearly sampled at the voxel grid

location x. The rest is the same as in MLP.

Finally, the Mesh baseline uses the soft-rasterization of

[6] as implemented in PyTorch3D [45] with the top-k face
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Source image Mesh Voxel Voxel+MLP MLP Ours Target image

Figure 4: Monocular reconstruction on Freiburg Cars and AMT Objects. In reach row, a single source image (1st column)

is processed by one of the evaluated methods (Mesh, Voxel, MLP+Voxel, MLP, Ours - columns 2 to 6) to generate a prescribed

target view (last column). We show results on the test split.

AMT Freiburg Cars

Train-test Test Train-test Test

Method 1 3 5 7 1 3 5 7 1 3 5 7 1 3 5 7

ℓ
R

G
B

1

Mesh .096 .096 .096 .096 .102 .102 .102 .102 .141 .141 .140 .140 .166 .166 .166 .166

Voxel .062 .061 .061 .061 .091 .091 .091 .091 .055 .055 .055 .054 .159 .159 .158 .158

Voxel+MLP .059 .059 .058 .059 .090 .090 .090 .090 .045 .045 .045 .045 .158 .157 .158 .157

MLP .037 .036 .036 .036 .088 .088 .088 .088 .041 .041 .041 .041 .152 .152 .152 .152

Ours .038 .032 .031 .030 .058 .046 .043 .042 .046 .041 .041 .040 .130 .120 .115 .114

Table 2: We evaluate the impact of increasing the number of source views during test time for the ℓRGB
1 metric. Target renders

and the corresponding metrics are produced for 1, 3, 5 and 7 source images. The best result is bolded where lower is better.

accumulation. The scene encoding zCNN is converted with

a pair of linear layers to: (1) a set {vi(z) ∈ R
3}Nvertex

i=1 of 3D

vertex locations of the object mesh, and (2) a 128× 128 UV

map of the texture mapped to the surface of the mesh, which

is rendered in order to evaluate the reconstruction losses

from section 3.4. The mesh is initialized with an icosahedral

sphere with 642 vertices.

4.3. Quantitative Results

Table 1 presents quantitative results on Freiburg Cars

and the AMT Objects, respectively. In terms of all percep-

tual metrics (ℓRGB
1 , ℓVGG

1 ) as well as depth and IoU, our

method is on par with the MLP on the train-test split. On

the test split, we outperform all other baselines in ℓRGB
1 ,
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Target imageSrc. image #1 #2 #4 #5#3 #6 #7

Tgt. render w/ #1 src. image Tgt. render w/ #3 src. images Tgt. render w/ #5 src. images Tgt. render w/ #7 src. images

Tgt. render w/ #1 src. image Tgt. render w/ #3 src. images Tgt. render w/ #5 src. images Tgt. render w/ #7 src. images

Target imageSrc. image #1 #2 #4 #5#3 #6 #7

Figure 5: Reconstruction with multiple source views. For each object, the top row shows all available source images

(columns 1-7) for a given target image (top right). The bottom row contains results conditioned on 1, 3, 5 or 7 source images.

In addition to the rendered new RGB views we also provide shaded surface renderings.

ℓVGG
1 and IoU on all 7 classes of AMT Objects and Freiburg

Cars. This indicates significantly better ability of our warp-

conditioned embedding to generalize to previously unseen

object instances.

We further find that our method is better at leveraging

multiple source views Nsrc > 1, outperforming all baselines

for the ℓRGB
1 error, see Table 2. When increasing the number

of source images our method performance for all metrics

improves whereas for all baselines it stays more or less

constant. This further shows the effectiveness of the warp-

conditioned embedding (WCR).

Regarding depth reconstruction (ℓ
Depth
1 ), our method out-

performs all alternatives on all datasets except the test split

of Freiburg Cars, where we are 2nd after Mesh. Here, we

note that ℓ
Depth
1 is only an approximate measure because: 1)

the predicted depth is compared to the COLMAP-MVS esti-

mate of depth [50], which tends to be noisy and; 2) the scale

ambiguity in SfM reconstructions that supervise learning

leads to a significantly unconstrained problem of estimating

the scale of a testing scene given a small number of source

views, which is challenging to resolve for any method.

4.4. Qualitative Results

Fig. 4 provide qualitative comparisons for monocular

novel-view synthesis. It shows that our method produces

significantly more detailed novel views, probably due to its

ability to retrieve spatial encodings from the given source

view. Fig. 5 further demonstrates the reconstruction improve-

ment when multiple source views N src > 1 are available.

5. Discussion and conclusions

Limitations. Even though our method outperforms base-

lines on the vast majority of metrics and datasets, there are

still several limitations. First, the execution of the deep MLP

at every 3D ray-location in a rendered frame is relatively

slow (depending on the number of source views rendering

takes between 3 and 8 sec for a 128×256 image on average),

which makes a real-time deployment challenging. Secondly,

due to our template-free approach, the object silhouettes

can be blurry. Lastly, despite no manual labeling is neces-

sary, our method still relies on segmentation masks that were

automatically generated with Mask-RCNN.

Conclusions. In this paper, we have presented a method

that is able to reconstruct category-specific 3D shape and ap-

pearance from videos of object categories in the wild alone,

without requiring manual annotations. We demonstrated that

our main contribution, Warp-Conditioned Ray Embedding,

can successfully deal with the inherent ambiguities present

in the video SfM reconstructions that provide our supervi-

sory signal, outperforming alternatives on a novel dataset

of crowd-sourced object videos. Future work could include

decomposition of shape, appearance and lighting allowing

for more control over the rendered images.
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