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Figure 1: Our NeuroMorph neural network takes as input two meshes (left and right) and produces in one go (i.e. in a

single feed-forward pass) a continuous interpolation and point-to-point correspondence between them (color coded). The

interpolation, expressed as a displacement field, changes the pose of the source shape while preserving its identity.

Abstract

We present NeuroMorph, a new neural network architec-

ture that takes as input two 3D shapes and produces in one

go, i.e. in a single feed forward pass, a smooth interpolation

and point-to-point correspondences between them. The in-

terpolation, expressed as a deformation field, changes the

pose of the source shape to resemble the target, but leaves

the object identity unchanged. NeuroMorph uses an ele-

gant architecture combining graph convolutions with global

feature pooling to extract local features. During training,

the model is incentivized to create realistic deformations

by approximating geodesics on the underlying shape space

manifold. This strong geometric prior allows to train our

model end-to-end and in a fully unsupervised manner with-

out requiring any manual correspondence annotations. Neu-

roMorph works well for a large variety of input shapes,

including non-isometric pairs from different object cate-

gories. It obtains state-of-the-art results for both shape cor-

respondence and interpolation tasks, matching or surpass-

ing the performance of recent unsupervised and supervised

methods on multiple benchmarks.

1. Introduction

The ability to relate the 3D shapes of objects is of key

importance to fully understand object categories. Objects

can change their shape due to articulation, other motions

and intra-category variations, but such changes are not arbi-

trary. Instead, they are strongly constrained by the category

of the objects at hand. Seminal works such as [33] express

such constraints by learning statistical shape models. In or-

der to do so, they need to put in correspondence large col-

lections of individual 3D scans, which they do by exploiting

the fact that individual objects deform continuously in time,

and by using some manual inputs to align different object

instances. Due to the high complexity of obtaining and pre-

processing such 3D data, however, these models remain rare

and mostly limited to selected categories such as humans

that are of sufficient importance in applications. In this pa-

per, we are thus interested in developing a method that can

learn to relate different 3D shapes fully automatically, in-

terpolating a small number of 3D reconstructions, and in a

manner which is less specific to a single category (Figure 1).

Due to the complexity of this task, authors have often

considered certain sub-problems in isolation. One is to
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establish point-to-point correspondences between shapes,

telling which points are either physically identical (for a

given articulated object) or at least analogous (for simi-

lar objects). A second important sub-problem is interpo-

lation, which amounts to continuously deforming a source

shape into a target shape. Interpolation must produce a col-

lection of intermediate shapes that are meaningful in their

own right, in the sense of being plausible samples from the

underlying shape distribution. The interpolation trajectory

must be also meaningful; for instance, if the deformation

between two shapes can be explained by the articulation of

an underlying physical object, this solution is preferred.

The correspondence and interpolation problems have

been addressed before extensively, by using tools from ge-

ometry and, more recently, machine learning. Most of the

existing algorithms, however, require at least some man-

ual supervision, for example in the form of an initial set

of sparse shape correspondences. Furthermore, correspon-

dence and interpolation are rarely addressed together due to

their complexity.

In this paper, we advocate instead for an approach in

which the correspondence and interpolation problems are

solved simultaneously, and in an unsupervised manner. To

do this, we introduce NeuroMorph, a new neural network

that solves the two problems in a single feed forward pass.

We show that, rather than making learning more difficult,

integrating two goals reinforces them, making it possible

to obtain excellent empirical results. Most importantly, we

show that NeuroMorph can be learned in a fully unsuper-

vised manner, given only a collection of 3D shapes as input

and certain geometric priors for regularization.

NeuroMorph advances the state of the art in shape

matching and interpolation, surpassing by a large margin

prior unsupervised methods and often matching the qual-

ity of supervised ones. We show that NeuroMorph can es-

tablish high-quality point-to-point correspondences without

any manual supervision even for difficult cases in which

shapes are related by substantial non-isometric deforma-

tions (such as between two different types of animals, like a

cat and a gorilla, as in Figure 1) which have challenged prior

approaches. Furthermore, we also show that NeuroMorph

can interpolate effectively between different shapes, acting

on the pose of a shape while leaving its identity largely un-

changed. To demonstrate the quality of the interpolation,

we use it for data augmentation, extending a given dataset

of 3D shapes with intermediate ones. Augmenting a dataset

in this manner is useful when, as it is often the case, 3D

training data is scarce. We show the benefits of this form of

data augmentation to supervise other tasks, such as recon-

structing continuos surfaces from sparse point clouds.

Our new formulation also gives rise to some interesting

applications: Since our method learns a function that pro-

duces correspondence and interpolation in a single feed for-

ward pass, it can be used not only to align different shapes,

but also for pose transfer, digital puppeteering and other vi-

sual effects.

2. Related work

To the best of our knowledge, we are the first to con-

sider the problem of learning a mapping that, given a pair of

shapes as input, predicts in a feed-forward manner their cor-

respondences and interpolation. This should be contrasted

to other recent approaches to shape understanding such as

LIMP [7] that try to learn a shape space. These architec-

tures need to solve the difficult problem of generating or

auto-encoding 3D shapes. Unfortunately, designing good

generator networks for 3D shapes remains a challenging

problem. In particular, it is difficult for these networks to

generalize beyond the particular family of shapes (e.g. hu-

mans) experienced during training. By contrast, we do not

try to generate shapes outright, but only to relate pairs of

given input shapes. This replaces the difficult task of shape

generation with the easier task of generating a deformation

field, working well with a large variety of different shapes.

The rest of the section discusses other relevant work.

Shape correspondences. The problem of establishing

correspondences between 3D shapes has been studied ex-

tensively (see the recent surveys [55, 52, 49]). Tradi-

tional approaches define axiomatic algorithms that focus

on a certain subclass of problems like rigid transforma-

tions [63, 66], nearly-isometric deformations [39, 1, 57, 44],

bounded distortion [35, 13] or partiality [32, 45, 31]. Meth-

ods such as functional maps [39] reduce matching to a spec-

tral analysis of 3D shapes.

More recent approaches use machine learning and are

often based on developing deep neural networks for non-

image data such as point clouds, graphs and geometric sur-

faces [5]. Charting-based methods define learnable intrin-

sic patch operators for local feature aggregation [34, 3, 37,

41, 48]. Deep functional maps [30] aim at combining a

learnable local feature extractor with a differentiable match-

ing layer based on the axiomatic functional maps frame-

work [39]. Subsequent works [20, 47] extended this idea

to the unsupersived setting and combined it with learnable

point cloud feature extractors [9, 50]. Moreover, [14] re-

cently proposed to replace the functional maps layer with a

multi-scale correspondence refinement layer based on op-

timal transport. Another related approach is [18] which

uses a PointNet [42] encoder to align a human template to

point cloud observations to compute correspondences be-

tween different human shapes.

Feature extractors for 3D shapes. Several authors have

proposed to reduce matching 3D shapes to matching local

shape descriptors. A common remedy is learning to re-

fine hand-crafted descriptors such as SHOT [54], e.g. with
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metric learning [30, 20, 47]. In practice, this approach is

highly dependent on the quality of the input features and

tends to be unstable due to the noise and the complex vari-

able structures of real 3D data. More recently, authors have

thus looked at learning such descriptors directly [9, 50]

with point cloud feature extractors [53, 43]. Another pos-

sibility is to interpret a 3D mesh as a graph and use graph

convolutional neural networks [29, 8]. The challenge here

is that the specific graph used to represent a 3D shape is

partially arbitrary (because we can triangulate a surface in

many different ways), and graph convolutions must dis-

count geometrically-irrelevant changes (this is often done

empirically by re-meshing as a form of data augmentation).

Shape spaces, manifolds and interpolation. 3D shapes

can be interpreted as low-dimensional manifolds in a high-

dimensional embedding space [27, 62, 23, 22]. The low-

dimensional manifold can, for example, capture the admis-

sible pose of an articulated object [65, 58, 24]. Given a

shape manifold, interpolation can then be elegantly formu-

lated as finding geodesic paths between two shapes. How-

ever, building shape manifolds may be difficult in practice,

especially if the input shapes are not in perfect correspon-

dence. Therefore, also inspired by LIMP [7], for training

NeuroMorph we follow approaches such as [12, 11] that

avoid building a shape manifold explicitly and instead di-

rectly construct geodesic paths that originate at the source

shapes and terminate in the vicinity of the target shapes.

Generative shape models. While manifolds provide a

geometric characterization of a shape space, generative

models provide a statistical one. One particular chal-

lenge in this context is designing shape-decoder architec-

tures that can generate 3D surfaces from a latent shape

representation. A straightforward solution is predicting

occupancy probabilities on a 3D voxel grid [6], but the

cost of dense, volumetric representations limits the reso-

lution. Other approaches decode point clouds [15, 64] or

3D meshes [19, 16] directly. A recent trend is encoding

an implicit representation of a 3D surface in a neural net-

work [36, 40]. This allows for a compact shape represen-

tation and a decoder that can generate shapes of an arbi-

trary topology. Following the same methodology, [38] pre-

dicts a time-dependent displacement field that can be used

to interpolate 3D shapes. This approach is related to ours,

but it requires 4D supervision during training, whereas our

method is trained on a sparse set of poses. ShapeFlow [26]

predicts dense velocity fields for template-based reconstruc-

tion. Similarly, [60] computes an intrinsic displacement

field to align a pair of input shapes, but they do not predict

an intermediate sequence.

3. Method

Let X and Y be 3D shapes, respectively called the source

and the target, expressed as triangular meshes with vertices

X = (xi)1≤i≤n ∈ R
n×3 and Y = (yj)1≤j≤m ∈ R

m×3,

respectively. Our goal is to learn a function

f : (X ,Y) 7−→ (Π,∆),

that, given the two shapes as input, predicts ‘in one go’ a

correspondence matrix Π and an interpolation flow ∆ be-

tween them. The matrix Π ∈ [0, 1]n×m sends probabilisti-

cally the vertices xi of the source mesh X to corresponding

vertices yj in the target mesh Y and is thus row-stochastic

(i.e. Π1 = 1). The interpolating flow ∆(t) ∈ R
n×3,

t ∈ [0, 1] shifts continuously the vertices of the source

mesh, forming trajectories:

X(t) := X+∆(t), (1)

that take them from their original locations X(0) = X to

new locations X(1) ≈ ΠY close to the corresponding ver-

tices in the target mesh.

The function f is given by two deep neural networks.

The first, discussed in Section 3.1, establishes the cor-

respondence matrix Π and the second, discussed in Sec-

tion 3.2, outputs the shifts ∆(t) for arbitrary values of

t ∈ [0, 1]. Both networks are trained end-to-end in an unsu-

pervised manner, as described in Section 3.3.

3.1. Correspondences and vertex features

The correspondence matrix Π between meshes X and Y
is obtained by extracting and then matching features of the

mesh vertices. The features are computed by a deep neural

network: X̃ = Φ(X ) ∈ R
n×d that takes the shape X as

input and outputs a matrix X̃ = (x̃i)1≤i≤n with a feature

vector x̃i for each vertex i of the mesh. Given analogous

features Ỹ = (ỹi)1≤i≤m ∈ R
m×d for the target shape, the

correspondence matrix is obtained by comparing features

via the cosine similarity and normalizing the rows using the

softmax operator:

Πij :=
exp(σsij)

∑m

k=1 exp(σsik)
s.t. sij :=

〈x̃i, ỹj〉2
‖x̃i‖2‖ỹj‖2

, (2)

with temperature σ ∈ R
+. In this way, Π1 = 1 and Π can

be interpreted as a soft assignment of source vertices xi in

X to target vertices yj in Y .

Feature extractor network. Next, we describe the neu-

ral network Φ(X ) that extracts the feature vectors that ap-

pear in Equation (2) (this network is also illustrated in Fig-

ure 2). While different designs are conceivable, we pro-

pose here one based on successive local feature aggrega-

tion and global feature pooling. The architecture makes use

of the mesh vertices X as well as the mesh topology. The
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Figure 2: NeuroMorph. An overview of our model.

latter is specified by the neighborhood structure E , where

(i, j) ∈ E ⊂ {1, . . . , n}2 means that vertex xj is connected

to vertex xi by a triangle edge. Thus, the mesh is fully spec-

ified by the pair X = (X, E).

The layers of the network Φ are given by EdgeConv [61]

graph convolution operators implemented via residual sub-

networks [21]. In more detail, each EdgeConv layer takes

as input vertex features X̃ = (x̃i)1≤i≤n on X and com-

putes an improved set of features X̃′ = (x̃′
i)1≤i≤n via the

expression:

x̃′
i := max

j:(i,j)∈E
hφ(x̃i, x̃j − x̃i). (3)

Here, a small residual network hφ is used to combine the

feature x̃i of the i-th vertex with the feature x̃j − x̃i of one

of the edges adjacent to it. This is repeated for all edges

incident on the i-th vertex and the results are aggregated via

component-wise max-pooling over the mesh neighborhood
{

j : (i, j) ∈ E
}

, resulting in an updated vertex feature x̃′
i.

The EdgeConv layer can effectively learn the local geo-

metric structures in the vicinity of a point. However, that

alone is not sufficient to resolve dependencies in terms of

the global geometry, since the message passing only allows

for a local information flow. Therefore, we append a global

feature vector to the point features after each EdgeConv re-

finement, by applying the max pooling operator globally:

x̃′′
i :=

(

x̃′
i, max

1≤i≤n
x̃′
i

)

. (4)

The network Φ is given by a succession of these lay-

ers, forming a chain X̃ → X̃′ → X̃′′ → . . . alternating

global (3) and local (4) update steps. The input features

X̃ = (X,N) are given by the concatenation of the abso-

lute position of the mesh vertices X with the outer normals

at the vertices N = (ni)1≤i≤n (the normal vectors ni are

computed by averaging over face normals adjacent to xi).

3.2. Interpolator

We are now ready to describe the interpolator component

of our model. Recall that the goal is to predict a displace-

ment operator ∆ such that the trajectory X(t) = X+∆(t)
smoothly shifts the point of the first mesh to points in the

second. Notice that ∆(t) ∈ R
n×3 is just a collection of

3D vectors associated to each mesh vertex, just like the ver-

tex positions, normals and feature vectors in the previous

section. Thus, we offload the calculation of the displace-

ments to a similar convolutional neural network and write:

∆(t) = Ψ(X ,Y, t). The difference is the input to the net-

work Ψ, which is now given by the 7-dimensional feature

vectors Z ∈ R
n×7:

Z :=
(

X, ΠY −X, 1t
)

. (5)

These feature vectors consist of the vertices X of the source

shape X , the offset vectors ΠY−X predicted by the corre-

spondence module of Section 3.11, and the time variable t
(‘broadcast’ to all vertices by multiplication with a vector of

all ones). Just like the network Φ in Section 3.1, the network

Ψ alternates global (3) and local (4) update steps to compute

a sequence of updated features Z → Z′ → Z′′ · · · → V

terminating in a matrix V ∈ R
n×3. The final displace-

ments are then given by a scaled version of V, and are set

to ∆(t) = tV(t).
In this manner, the network can immediately obtain a

trivial (degenerate) solution to the interpolation problem by

setting V(t) = ΠY − X, which amounts to copying ver-

batim part of the input features Z. This result is a simple

linear interpolation of the mesh vertices, trivially satisfying

the boundary conditions of the interpolation:

X(0) = X+ 0 ·V(0) = X, (6)

X(1) = X+ 1 · (ΠY −X) = ΠY. (7)

Linear interpolation provides a sensible initialization, but is

in itself a degenerate solution as we wish to obtain ‘geo-

metrically plausible’ deformations of the mesh. To prevent

the network from defaulting to this case, we thus need to

incentivize geometrically meaningful deformations during

training, which we do in the next section.

3.3. Learning

In this section, we show how we can train the model

in an unsupervised2 manner. That is, given only a collec-

tion of example meshes with no manual annotations, our

method simultaneously learns to interpolate and establish

1Note that ∆(1) = ΠY −X.
2In practice, the only assumption we make about the input objects is

that they are in an approximately canonical rigid pose in terms of the up-

down and front-back orientation. For most existing benchmarks this holds

trivially without any further preprocessing. The recent paper by [50] calls

this setup weakly supervised.
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point-to-point correspondences between them. This sets

it apart from prior work on shape interpolation which ei-

ther require dense correspondences during training or, in

the case of classical axiomatic interpolation methods, even

at test time. Learning comprises three signals, encoded by

three corresponding losses:

ℓ := λregℓreg + λarapℓarap + λgeoℓgeo. (8)

The loss ℓreg ensures that correspondences and interpolation

correctly map the source mesh on the target mesh, and the

other two ensure that this is done in a geometrically mean-

ingful way. The latter is done by constraining the trajectory

(X(t))t∈[0,1] generated by the model. Recall that the model

can be queried for an arbitrary value t ∈ [0, 1], and it is

thus able to produce interpolations that are truly continuous

in time. During training, in order to compute our losses,

we sample predictions X0, . . . ,XT for an equidistant set of

discrete time steps Xk := X(k/T ) where k = 0, . . . , T.

Registration loss. Requirement Equation (6) holds triv-

ially as ∆(0) = 0 is built into our model definition (see

Equation (1)). For Equation (7), we introduce the registra-

tion loss: ℓreg
(

XT ,Y,Π
)

:= ‖ΠY−XT ‖
2
2. Since our goal

is to compute shape interpolations without any supervision,

we use the soft correspondences Π estimated by our model

instead of ground-truth annotations.

As-rigid-as-possible loss. In general, there are infinitely

many conceivable paths between a pair of shapes. In order

to restrict our method to plausible sequences, we regularize

the path using the theory of shape spaces [27, 62, 23]. As

we work with discrete time, we approximate the ‘distance’

between shapes in the shape space manifold by means of

the local distortion metric between two consecutive states

Xk and Xk+1. To that end, we choose the as-rigid-as-

possible [51] metric:

Earap

(

Xk,Xk+1

)

:=

1

2
min

Ri∈SO(3)
i=1,...,n

∑

(i,j)∈E

∥

∥Ri(Xk,j−Xk,i)−(Xk+1,j−Xk+1,i)
∥

∥

2

2
.

Intuitively, this functional rotates the local coordinate

frame of each point in Xk to the corresponding deformed

state Xk+1 and penalizes deviations from locally rigid

transformations. Moreover, the rotation matrices Ri can

be computed in closed form which allows for an efficient

optimization of Earap (see [51] for more details). Finally,

we can use this functional to construct the first component

of our loss function for the whole sequence (Xk)k:

ℓarap
(

X0, . . . ,XT

)

:=

T−1
∑

k=0

Earap(Xk,Xk+1) + Earap(Xk+1,Xk). (9)

err. p.p. w/o p.p.

A
xi

o
m

. BCICP [44] 6.4 — —

ZoomOut [35] 6.1 — —

Smooth Shells [13] 2.5 — —

S
u

p
. 3D-CODED [18] 2.5 — —

FMNet [30] 5.9 PMF 11

GeoFMNet [9] 1.9 ZO 3.1

U
n

su
p

.

SurFMNet [47] 7.4 ICP 15

Unsup. FMNet [20] 5.7 PMF 10

Weakly sup. FMNet [50] 1.9 ZO 3.3

Deep shells [14] 1.7 — —

NeuroMorph (Ours) 1.5 SL 2.3

Table 1: Unsupervised correspondences on FAUST [2]

remeshed. Mean geodesic error in % of the diameter on

the test set. For methods that use an axiomatic technique

for refinement (PMF [57], ZO [35], ICP [39] or SL [13]),

we also show the result without.

Figure 3: Unsupervised correspondences on

SHREC20 [10]. We only compare our method to

other unsupervised methods here, since there are no dense

ground-truth correspondences for this benchmark which is

a requirement for most supervised approaches.

Geodesic distance preservation loss. The final compo-

nent of our loss function in Equation (8) aims at preserving

the pairwise geodesic distance matrices DX and DY un-

der the estimated mapping Π, this is given by ℓgeo
(

Π
)

:=
‖ΠDYΠ

⊤ −DX ‖22. Note that this energy only regularizes

the estimation of the correspondences Π as X and Y are the

(fixed) source and target shapes.

Intuitively, this objective promotes correspondences Π
with bounded geodesic distortion. Variants of this objective

are commonly used in classical shape matching [4, 59, 57]

and have been also successfully integrated in a learning

pipeline [20] in combination with functional maps [39].

3.4. Implementation details

During training, we sample a pair of input shapes from

our training set, predict an interpolation and a set of dense

point-to-point correspondences and optimize the model pa-

rameters according to our composite loss (8). All hyper-
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ZoomOut [35] UnsupFMNet[20] Deep Shells [14] Smooth Shells [13] Ours

Figure 4: Unsupervised correspondences on G-S-H. We provide the cumulative geodesic error curves (in % of the diameter)

of different approaches (left). For a detailed comparison, we display heat maps on one pose of the ’Galgo’ shape from our

dataset (right). We color code the mean geodesic error for each point of the surface, averaged over all 1024 pairs from the

test set. Our method is particularly good at discovering structural correspondences, i.e. matching extremities correctly.

Source Smooth Shells [13] Ours Ours + SL

Figure 5: Unsupervised correspondences on SHREC20. A qualitative comparison on non-isometric pairs from

SHREC20 [10]. While the correspondences predicted by our method are generally very accurate, the postprocessing still

helps to remove local noise. The baseline [13] naturally produces smooth matches, but global parts of the geometry are

sometimes mismatched (compare for instance the front legs and and head of the camel shown here).

parameters were selected on a validation set and the same

configuration is used in all of our experiments.

Two parameters are varied during training: In the begin-

ning, we set the number of discrete time steps to T = 1
and then increase it on a logarithmic scale. This multi-scale

optimization strategy, which is motivated by classical non-

learning interpolation algorithms [27, 23], leads to an over-

all faster and more robust convergence. The geodesic loss

ℓgeo initially helps to guide the optimization such that it con-

verges to meaningful local minima. On the other hand, we

found that it can actually be detrimental in the case of ex-

tremely non-isometric pairs (e.g. two different classes of

animals). Therefore, we decay the weight λgeo = 0 of this

loss as a fine-tuning step during training after a fixed num-

ber of epochs.

As a form of data augmentation, we randomly subsample

the triangulation of both input meshes separately and rotate

the input pair along the azimuth axis in each iteration. This

prevents our method from relying on pairs with compatible

connectivity, since we ideally want our predictions to be

independent from the discretization.

At test time, we simply query our model to obtain an

interpolation of an input pair of shapes. The soft correspon-

dences Π obtained with our method are generally very accu-

rate, but the conversion to hard correspondences (i.e. point-

to-point matches) via thresholding leads to a certain degree

of local noise. To create more smooth correspondences, we

additionally post-process our results with the multi-scale

matching method smooth shells [13]. Post-processing is

standard in unsupervised correspondence learning.

4. Experiments

We now evaluate the performance of NeuroMorph

in terms of shape correspondence and interpolation

(Sec. 4.1, 4.2), as well as for data augmentation in Sec. 4.3.

4.1. Shape correspondence

Datasets. We evaluate the matching accuracy of our

method on two benchmarks. The first is FAUST [2], which

contains 10 humans with 10 different poses each. We split

it in a training and test set of 80 and 20 shapes respec-

tively. Instead of the standard meshes, we use the more

recent version of the benchmark [44] where each shape

was re-meshed individually. This makes it challenging but

also more realistic, since for real-world scans the sampling
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Figure 6: Interpolation on FAUST [2] and MANO [46]. We show a quantitative comparison of interpolations obtained with

Hamiltonian shape interpolation [11], LIMP [7], ShapeFlow [26] and our method. ShapeFlow [26] computes an extrinsic

flow to interpolate a pair of objects in an unsupervised manner, but they do not model shape correspondences explicitly which

is suboptimal for the large pose variations of deformable object categories. On both benchmarks, our method outperforms

LIMP [7], despite the fact that the it uses g.t. correspondences for training. It is also on par with the axiomatic baseline

Hamiltonian interpolation [11], which is remarkable since [11] requires dense correspondences even at test time.

[7]

[11]

Ours

Figure 7: Interpolation on MANO [46]. We show the

interpolation sequence (gray) for a pair (blue) from the

test set. LIMP [7], which requires ground-truth correspon-

dences for training, explicitly reconstructs the geometry of

intermediate shapes in a variational autoencoder architec-

ture which limits the generalization to unseen poses. Hamil-

tonian shape interpolation [11] yields high quality results

that are comparable to ours, but it is an axiomatic method

that requires ground-truth correspondences at test time and

multiple minutes of optimization per pair.

of surfaces is generally incompatible. The second bench-

mark we consider is the recent SHREC20 challenge [10]

which focuses on non-isometric deformations. It contains

14 shapes of different animals, some of which are real scans

with holes, topological changes and partial geometries. The

ground truth for this dataset consists of sparse annotated

keypoints which we use for evaluation. Since there are

no dense annotated point-to-point correspondences, most

existing supervised methods do not apply here. The final

benchmark we show is G-S-H (Galgo, Sphynx, Human), for

which we created our own dataset, see ?? for more details.

It contains non-isometric pairs from three object categories

(a dog ’Galgo’, a cat ’Sphynx’ and a human) with multi-

ple challenging poses each, as well as dense ground truth

matches.

Evaluation metrics. Following the Princeton benchmark

protocol [28], the accuracy of a set of point-to-point corre-

spondences is defined as the geodesic distance of the pre-

dicted and the ground-truth matches, normalized by the

square root area of the mesh. For FAUST remeshed, we

compute the distance for all points, whereas for SHREC20

this is done for all available sparse annotations.

Discussion. As shown in Table 1, Figure 3 and Figure 4,

NeuroMorph obtains state-of-the-art results on FAUST

remeshed, SHREC20 and our own benchmark G-S-H, re-

spectively. The overall suboptimal performance of existing

methods on the latter two benchmarks can be attributed to

the fact that, expect for [13], most of them implicitly assume

near-isometry or at least compatible local features. This,

however, does not hold for most examples in SHREC20

(see Figure 5 for a qualitative comparison) and G-S-H (for

instance, on SHREC20, NeuroMorph matches 92% of the

vertices within 0.25 geodesic error vs. 79% of the second

best, smooth shells). NeuroMorph is particularly good at

discovering structural correspondences, which can then be

further refined in post-processing.

4.2. Shape interpolation

Datasets. For shape interpolation, we report results on the

FAUST [2] (see Section 4.1) and MANO [46] datasets. The

latter consists of synthetic hands in various poses — we use

100 shapes for training and 20 different samples for testing.

Evaluation metrics. We use two metrics to quantify the

precision of an interpolation. The conformal distortion met-

ric signifies how much individual triangles of a mesh distort

throughout an interpolation sequence, in comparison to the

reference pose X , see [25, Eq. (3)] for a definition. Less
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Figure 8: Data augmentation for implicit surface reconstruction. We show, as a proof of concept, that our method can

be used to augment a small training set with additional poses. We verify this by comparing the reconstruction error of an

implicit surface reconstruction method [17] with and without data augmentation. The general idea behind this is to construct

a shape space that encodes arbitrary poses in a latent representation. As we show here, supplementing collections of sparse

observations with intermediate poses constitutes a natural extension which helps to learn a meaningful shape distribution.

distortion corresponds to more realistic shapes. The other

metric we consider measures the reconstruction error of the

target shape Y , defined as the Chamfer distance between Y
and the deformed shape X (1). A good overlap at t = 1 is an

important quality criterion because, while our interpolations

exactly coincide with the first shape X = X (0), they only

approximately align with Y ≈ X (1). The same holds true

for the three baselines [7, 26, 11] that we compare against.

Discussion. Results are shown in Figure 6. On both of

these benchmarks, our method significantly outperforms

the supervised baseline LIMP [7] which requires ground-

truth correspondences for training. Similar to our approach,

the unsupervised method ShapeFlow [26] continuously de-

forms a given input shape to obtain an interpolation. How-

ever, they do not estimate correspondences explicitly which

limits the performance on deformable object categories like

humans, animals or hands3. More surprisingly, our ap-

proach is even on par with the axiomatic, non-learning in-

terpolation baseline [11] which requires to know dense cor-

respondences at test time. See Figure 7 for a qualitative

comparison on MANO.

4.3. Application: data augmentation

Our method is, to the best of our knowledge, the first one

that jointly predicts correspondences and an interpolation of

deformable objects in a single learning framework. As an

application of unsupervised interpolation, we show how our

method can be used to create additional training samples

as a form of data augmentation. To that end, we train an

implicit surface reconstruction method [17] on a small set

of 20 SMPL shapes from the SURREAL dataset [56] and

evaluate the obtained reconstructions on a separate test set

3These types of objects typically have a high pose variation with large

degrees of non-rigid deformations, whereas ShapeFlow mainly specializes

on man-made objects like chairs or cars. The few deformable examples

that they show in [26, fig. 5] are intended as a proof of concept since they

use ground-truth correspondences and overfit on a single pair of shapes.

of 100 shapes. Additionally, we use our method to create

3 additional, interpolated training poses for each pair in the

training set and compare the results with the vanilla train-

ing. To measure the quality of the obtained reconstructions,

we report the reconstruction error on the test set, defined as

the Chamfer distance of the test shapes to the reconstructed

surface, see Figure 8.

Overall, these results indicate that using our method to

enlarge a training set of 3D shapes can be useful for down-

stream tasks, especially when training data is limited.

5. Conclusions

We presented a new framework for 3D shape understand-

ing that simultaneously addresses the problems of shape

correspondence and interpolation. The key insight we want

to advocate is that these two goals mutually reinforce each

other: Better correspondences yield more accurate inter-

polations and, vice versa, meaningful deformations of 3D

surfaces act as a strong geometric prior for finding corre-

spondences. In comparison to related existing approaches,

our model can be trained in a fully unsupervised manner

and generates correspondence and interpolation in a sin-

gle pass. We show that our method produces stable results

for a variety of correspondence and interpolation tasks, in-

cluding challenging inter-class pairs with high degrees of

non-isometric deformations. We expect that NeuroMorph

will facilitate 3D shape analysis on large real-world datasets

where obtaining exact ground-truth matches is prohibitively

expensive.
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